ORACLE
REPORT WRITER/TEXT FORMATTER

USER'S GUIDE

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

"ORACLE?™"™
REPORT-WRITER

USER'S GUIDE

TABLE OF CONTENTS

Report Writer Overview 5-1
Using the Report Formatter (RPF) 5=7
Report Formatter (RPF) . 5-19
Using the Report Writer Utility 5-43
(RPT)

Report Writer Utility (RPT) 5-T70

REPORT - WRITER

OVERVIEW

The ORACLE Report Writer provides SQL's query capabilities,
in additinon to text formatting capabilities, to enable ORACLE
to produce veports that combine information derived from the
database with additional textual information such as
headings, explanatory text and any other material desired.
Potential applications for the Report Writer are quite
varied. 1In the simplest case, it can be used to produce a
report derived from a single ORACLE table, with column
headings, columns of database information, and totals as
desired. Examples of more complex applications are the
production of reports with many levels of nesting, with
multiple breaks in columns, and with a variety of subtotals
and totals presented. Other applications that emphasize the
text processing capabilities could include the production of
computer-generated correspondence, with name and address
information, as well as information 1included 1in the
correspondence derived from the database, and the production
of perindic budget and cost reports used in the management of
a business. Of course, the Report Writer can also be used to
print on preprinted forms.

The Reponrt Writer is comprised of two programs that must both
be used to derive information from the database and produce a
report which presents the derived information in the desired
fashion, as illustrated by Figure 1.1. The first of these,
RPT, derives database information through SQL statements.
The second, RPF, is a text formatter that formats the
information based on format commands included in the text.

Generation of a report is controlled by a single file, the
treport control file, which contains report writer statements
(for RPT), text formatter commands (for RPF) and any other
text material that is to be included in the report.

This file can be created using any standard text editor.
Once the report control file is complete, RPT is executed.
RPT reads the report control file, scanning for report writer
statements. Text formatter commands and user text are merged
with the database-derived information that is produced by the

RPT run.

5-2

| Report Writer Statements|
| + |
User Text |

+ I

Format (RPF) Command |

et +
sampl.rpt P
Il
\ /
\/
/ \
/ REPORT \
/ \
\ WRITER /
\ /
\ (RPT) /
I
|
\ 7/
\/
o r
INTERIM TEXT | Database + User Text |
FILE I And]
-------------- | Format (RPF) Commands|
et +
sampl.fmt I
I
\ /
\/
/ \
/ TEXT \
/ \
\ FORMATTER /
\ /
\ (RPF) /
Il
|1
\ /
\/
¥ S +
N +|
trr—————— +1 1
tommm +1 11
| AAAAAAA]| | |+
leeeeeaall+
| XXXXXXX | +
fommm——— +

output report

| "cuser>" |
| Database |

ORACLE DATABASE

* Report Generation Process "

Figure 1.1

Report Writer statements cause RPT to open the user's ORACLE
database to derive information for the report. 1Incorporated
within a report program are SQL queries to derive the desired
data. Other statements cause RPT to include report heading
and footing information, use specific data output formats,
and conditinnally branch to and execute other SQL or RPT
statements. RPT can be directed to intersperse the database
infrrmation within the RPF commands and user supplied text.

when RPT processing 1is completed, the interim file it
pronduces 1is processed by the Report Formatter (RPF) to
generate the desired rvreport. Before processing by RPF, at
the end of the RPT run, the interim file contains text
supplied by the user, information extracted from the database
and RPF commands specifying how that information should be
placed on the report. RPF commands can specify:

- horizontal and vertical margins

- centering and underlining

-~ tabulation

- page numbering

- spacing and actual placement of text

RPF output can be directed to a line printer, typewriter
terminal, or CRT. Figures 1.2, 1.3, and 1.4 are examples of
Report Writer-generated rvreports. A detailed explanation of
these repnrt programs is provided in Section 5.

This manual serves two purposes. It is a detailed reference
manual on the RPT Report Writer and the RPF Report Formatter.
It also serves as a User's Guide, informing the reader by
example how the various features of these two programs
interact to construct a complete report. The rvreader |is
encouraged to first become familiar with the RPF text
formatting language before tackling the RPT programming
statements.

TECHNOLOGY

NAME

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
OATES
TURNER
ADAMS
JAMES
FORD
MILLER

JOB

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN
MANAGER
MANAGER
ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK
ANALYST
CLERK

SYSTEMS,

PERSONNEL REPORT FOR SEPTEMBER, 1980

SALARY

$800.00
$1,600.00
$1,250.00
$2,975.00
$1,250.00
$2,850.00
$2,450.00
$3,000.00
$5,000.00
$1,500.00
$1,100.00

$950.00
$3,000.00
$1,300.00

END OF REPORT

Figure 1.2

="pxample 1 - Tabular Report .

I

COMMISSION

$300.00
$500.00

$1,400.00

DNO

20
30
30
20
30
30
10

10
30
20
30
20
10

Division

by Department

Payroll

Report

******i**t****i*t*t*******tt*********f*****i*****t****

DEPTNO: 010 - - DEPTNAME:

ADMINISTRATION

*t*t****t********t******t*t**t*******************t****

EMPNO NAME
7782 CLARK
7934 MILLER
7839 OATES

MONTHLY
SALARY

$3162.50
$1300.00
$§5750.00

Department Summary

AVG = $3,404.17

MIN = $1,300.00

MAX = $5,750.00

ANNUAL
COMPENSATION

—————— —— -

$37,950.00
$15,600.00
$69,000.00

$122,550.00

RARRRERRERRRRARRARARRRRARANARRARARARRRRR R AR ARRRAARRERAERS

DEPTNO: 020 - - DEPTNAME:

RESEARCH

P Y Y Y 2222322222222 2222222232222 2 22 2 2 2 2 2 2 2

EMPNO NAME
7369 SMITH
7566 JONES
7876 ADAMS
7788 SCOTT
7902 FORD

7955 WILSON
7956 JAKES

MONTHLY
SALARY
$800.00
$3421.25
$1100.00
$3000.00
$3000.00

$1000.00

Department Summary

* Example 2 - Nested Report *

Figure 1.3

ANNUAL
COMPENSATION

$9,600.00
$41,055.00
$13,200.00
$36,000.00
$36,000.00

$12,000.00

Date : 03/25/81

To: BLAKE
Department : 30 - SALES

Locatinn : PARIS

From : Bill James
Director of Personnel

Subj : 1982 Employee Compensation Plan

Its budget time again! To aid you in completing the salary
portion of your budget I have computed your department's

current salary expenses. For planning purposes we are
presently estimating an across the board increase of 10% in

the 1982 salary pool.

Your department's 1981 figure is: $140,430.00

Estimated 1982 figure is: $154,473.00

In completing your salary plan you should break this total
down by individual emplonyees. Please let me know if you have
any questions on this or related issues.

Bill

Example 3 - Sample Letter

Figure 1.4

5-7

USING

T HE REPORT FORMATTEHR

(RPF)

2.1 Overview

This section discusses methnds for using RPF commands to create
a complete report. First, a simple example is presented, and
methods for producing it are described; then a sequence of
increasingly complex examples is presented, each with its own
discussion of methods for producing it.

RPF receives both the input it processes and the commands that
direct the processing in the same file. Thus, commands
imbedded within the file to be formatted are used to control
the formatting operation. The RPF user presents commands to
RPF by inserting them into the file to be formatted, usually
using a text editor (of course, if the file is constructed by a
program, RPF commands can also be inserted by the program).
This process is illustrated by the diagram of Figure 2.1.

The imbedded commands control a variety of options, such as
what margins to use, when to skip to the next page, how far to
indent a paragraph, where to skip a line, how to number the
pages, etc.

RPF reads an input file and formats it into output pages as
directed by the imbedded commands. The text is viewed as a
series of words. A word is a collection of one or more
characters which is terminated by at least one space or an end
of line character (An end of line character is inserted into
the text file by the editor when the user enters a carriage
return). RPF places each word, one after another into the
output line. One space will separate each word on output,
regardless of the number of spaces the user may have entered
between the words on input.

/ \

| <

| P:

\ /

; \
USER

TERMINAL

- ——— ——— - —— — - — =

/ R P F \

"FORMATTED OUTPUT"

* Pigure 2.1 *

When the line is full and the next word will not entirely fit
within the current line, the last word is shifted to the right
sn that the last character is aligned with the right margin. A
word is indivisable and is never split between lines. RPF puts
spaces between words so that the right and left margins are
justified. RPF will continue to place words in the output
pages until the end of the input file is encountered.

RPF allows the user to define the starting and ending positions
of the output line. The area on a line where text is placed is
called a column. If the user dones not specify the boundaries
of a column, RPF will place the text in a default column which
begins in position one and extends to position 132.

2.2 Example 1 — A Simple Letter

Now that the basics have been reviewed, let's look at the input
file which is required to produce a simple letter. Figure 2.2A
is a listing of the file which created the letter in figqure
2.2B. The input file was created using a standard text editor.
The line numbers and titles were added after RPF was executed.

RPF differentiates its commands from the user's text by the
leading '.'(period) or '#'(pound sign). A user may begin words
with these characters providing the word is not exactly like an
RPF command. If it is, a second '.' or '#' will tell RPF that
this is text. On output only one '.' or '#' will be printed.
Commands may be specified with either upper or lower case
letters.

The letter was printed with left and right margins of '13' and
173'. This was done by defining a single column beginning in
position '13' and extending to position '73'. The command to
do this is shown in Line 1.

The '.dt' command on Line 1 defines a table with an identifier
nf '1' and contains the column beginning in position '13' and
extending through and including position '73'. Notice the
period following the '73'. It is required to tell RPF that
there are no more columns in this table.

0 o0

[P
BWNFOWVWOJAU B WN

15:
16:

23:

(8.}
|

10

.dt 1 13 73 .

#page 6 58

.sp 1

.t 1

.5 3

January 10, 1981

.s 3

Mr. William 0. Smith .n
3752 Oakwood Drive .n Seaport, Me. 96142
.S 4

Dear Bill:

. 4 .p

I hope you have received the medical and dental insurance forms that I se
.s 1

.p The form you submitted for your November 1, 1980 visit to Dr. George
Smedley did not indicate the nature of the treatment. Please have the
doctor write me a note describing the reason for the visit and the
treatment which was prescribed.

.b o)

If you have any questions please give me a call at my office.

.5 2 .

Sincerely,

.S 4

Sharon Brown

.te

Example 1 - RPF Input Text

* pigure 2.2 A "

January 10, 1981

Mr. William O. Smith
3752 Oakwnnd Drive
Seapnrt, Me. 96142

Dear Bill:

I hope you have vteceived the medical and dental
insurance forms that I sent.

The form you submitted for your November 1, 1980 visit
to Dr. George Smedley did not indicate the nature of the
treatment. Please have the doctor write me a note describing
the reason for the visit and the treatment which was

prescribed.
If you have any questions please give me a call at my

office.

Sincerely,

Sharon Brown

Example 1 - RPF Output

* Figure 2.2 B "

11

Defining a table does not automatically cause the text to be
placed within the specified column boundaries. A table must be
invoked before it will take effect. The 't' command in Line 4
invokes table '1'. If user text was included prior to Line 4
it would have been formatted according to the definition of the
default table; a single column beginning in position '1’ and
extending through position '132°'.

The 'page' command on Line 2 defines the top and bottom margins
of a page. RPF will begin placing text on the sixth line of
every page and automatically skip to the next page after
completing line 58. All pages are assumed to have 66 lines.
If the print spacing is six lines per inch, the 66 lines will
cover a standard 11 inch page.

The 'sp' command defines the spacing between lines. Since the
default is single spacing this command could have been omitted.
The '.s 3' command on lines 5 & 7 will cause three lines to be
skipped. Printing on stationery will require skipping enough
lines to have the first line printed below the letterhead.

Line 6 contains the first line of user text. Three words are
specified: ‘'January', "10,', and '1981'. Remember that the
number of spaces between words on input has no effect on the
spacing on output. These words could have been input on
separate lines and still produced the same results.

Line 8 contains the name of the addressee followed by a '.n'
(new line) command. This is the same as the 'return' key on a
typewriter. The 'n' command on Line 9 causes the city/state to
be printed on the line following the street address.

The paragraph command ('.p') on Line 12 causes the text which
follows to begin on the next line and be indented five spaces.
The text within the body of the letter is printed within the
column boundaries. As noted above as many words as possible
will be placed on a line. The word 'insurance' would not
completely fit on the same line as 'dental'. The word ‘dental’
was aligned with the right hand margin, and the additional
spaces were evenly distributed throughout that line.

The blank line ('.b') command inserts one blank line and has
the same effect as '.s 1' (skip one line).

The table end ('.te') command on Line 25 instructs RPF that
table 'l' is no longer active. Column boundaries revert back
to the default table. If the active table is not terminated an
' UNEXPECTED END OF COLUMN' message will be issued.

The sample letter was printed on a typewriter quality printer
with the following system command:

RPF ttl:/pa=letter.abc

where ttl: is the system address for the desired printer. The
/pa instructs RPF to pause and sound the alarm before printing
each page. This will permit the user to individually load each
sheet of paper. When ready, any character may be entered to
start the printing. The entered character will not be printed.

'letter.abc' is the name of the input text file. If the file
qualifier is omitted (in this case 'abc'), '‘rpf' is assumed.

2.3 Example 2 — A Tabular Report

The second example is the tabular report shown in figure 2.3B.
Figure 2.3A is a listing of the input text file which produced
this report. The line numbers and titles in 2.3A were added
after RPF was executed.

The '.dt' command on line 1 defines table 'l' which contains a
single column extending from position 13 to 73. A second
table, table '2', is defined on line 2. This table contains 5
columns; the first extending from position 1 to 5, the second
from 9 to 28, the third from 32 to 39, and so on. Notice that
the fifth column is defined by the last pair of numbers; 52 and
0. The zero signifies that this column ends on the right hand
margin of the column in which this table is invoked. We will
see a little later how table '2' is used to create this tabular

report.

OWOJAU & W -
oo 00 s se

.dt 1 13
dt 2 1
.page 6
.t 1

.S 4
.cul " A
.8 2
.cul MON
.S 4

.t 2

73 .

59 28 32 39 42 49 52 0 .

58

LL SEASONS SPORTING GOODS " .

THLY SALES REPORT .

ITEM .n NO. .nc
.cen ITEM . .n .cen DESCRIPTION . .nc

.r PREVIOUS .n MONTH .nc

.r CURRE
.t Y-T-D
.S 2
2354 .nc
.5 1
6734 .nc
.S 1
8940 .nc
.S 1
.nc¢ .nc

: $4434.47

.te .s 3
.cul END
Qte

NT .n MONTH .nc
+NC

NFL Football .nc $175.34 .nc $202.45 .nc $564.89

Chicago Cubs Baseball Uniform .nc $56.10 .nc $162.38

.NC

Alpine Skis .nc $941.84 .nc $1005.93 .nc $3582.57 .nc

-------- .n $1173.28 .nc ------== ,n $1307.76

\ OF \ REPORT .

* Example 2 - A Tabular Report *

Figure 2.3 A

.nc $287.01

ITEM
NO.

2354

6734

8940

* ALL SEASONS SPORTING GOODS *

MONTHLY SALES REPORT

ITEM PREVIOUS CURRENT
DESCRIPTION MONTH MONTH

NFL Football $175.34 $202.45
Chicago Cubs $56.10 $162.38

Baseball Uniform

Alpine Skis $941.84 $1005.93

$1173.28 $1307.76

END OF REPORT

"Example 2 - A Tabular Report"”

Figure 2.3 B

$564.89

$287.01

$3582.57

$4434.47

Line 3 defines the top and bottom margins of the output pages,
and line 4 invokes table 'l'. Since table 'l1' has only one
column, the text that follows will be formatted within that
column's boundaries. The '.cul' command on line 6 indicates
that the text between the command and the terminating period
should be centered within the current column and undetrlined.
Since the current column extends from position 13 through 73,
this text is centered on the page.

Figure 2.3A was printed on a special printer which allows bold
face type to be substituted for underlined characters. If this
option was not selected or a standard line printer was used,
the specified text would have been underlined. If the output
device is a video terminal (CRT) the user can specify at RPF
execution time that all underlined text be displayed in reverse
video. See Section 2.6 - 'Executing RPF' for additional

information.

The '.cul' command on line 8 produces a second line of centered
and underlined text.

At this point we are ready to create our tabular report. The
report will contain five columns across the page. If this
report was being typed the user would probably set tab stops
for the first position of each column. With RPF a new table is
invoked to establish these column boundaries. The command on
line 10 invokes table '2', which was previously defined on line
2. Unlike table 'l1' which had only one column, table '2'
provides five columns in which to output text.

When a table is invoked it subdivides the tcurrent' column. In
this case the 'current' column is the single column of table
1. Therefore, invoking table '2' subdivides the 61 print
positions from position 13 through 73 into five separate areas
or columns. The column boundaries for a table arve interpreted
relative to the current column. For example the first column
in table '2' begins in relative position 1 and extends to
relative position 5. Since the current column begins in
position 13, the absolute boundaries of this column are 13
through 18. The last column begins in relative position 52
(absolute 65) and extends to the end of the current column
(absolute position 73) .

A table must completely fit within the column in which it is
invoked. The column in which table '2' was invoked contained
61 print positions. If any columns in table '2' extended
beyond relative position 61 an error would be indicated. For
example, if the last column was defined as '52 65', when the
command on line 10 was executed RPF would have returned the

error "COLUMN TOO SMALL".

Now that table '2' has been defined and invoked, output text
may be placed in each of the five columns. The text on line 11
is placed within the first column. The '.n' command causes the
text 'NO.' to be placed on a new line within this column. The
'.nc' command causes the placement of text in the current
column to stop. The text which follows will be place on the

first line of the next column in table '2'.

Line 12 requests that the words 'ITEM' and 'DESCRIPTION' be
centered on the first two lines of the second column. The '.r'
(right justify) command on lines 13, 14, and 15 tells RPF that
all subsequent text lines for columns 3, 4, and 5 should be
right justified. Notice that the column headings are aligned
with the right hand boundary of these columns.

Advancing past the last column of a table ('.nc' on line 15)
causes the first column to become current again. The '.s 2'
command on line 16 would have the same effect in addition to
skipping tweo lines. Line 17 places the first line of data into
each conlumn of the report. Notice that the dollar values in
the last three columns are right justified. Lines 19 and 21
define the output for the second and third lines of the report.

The text 'Chicago Cubs Baseball Uniform' would not fit on one
line nf the 'ITEM DESCRIPTION' column. As explained above, RPF
will place as many words as possible on a line of a column.
When a line is full, the last word is right aligned and the
remaining text is placed on the next line. Since 'ITEM
DESCRIPTION' required two lines, RPF adjusted the other columns
so that all the entries for the next item ('ITEM NO.' 8940) are
on the same line. RPF will cause the appropriate number of
lines to be skipped within each column so that text placement
will begin on the line after the longest column.

The summary information is specified on lines 23 and 24. Since
no text was displayed in the first two columns, two '.nc'
commands were included to position to the third column. The
output text for the last three columns contains a 1line of
dashes followed by the column total on the next line.

5-18

The '.te' on line 25 terminates the current table; Table '2'.
Terminating a table causes the previously invoked table to
become active again; Table 'l'. The text on line 26 will be
centered and underlined within the column boundaries of 13 and
73. The back slash '\' requests RPF to insert a second blank
character between each of the words. Normally only one blank
separates words on output.

The '.te' on line 27 terminates Table 'l' causing the default
table to become active.

5-19

REPORT FORMATTER

(RPF)

3.1 Overview

The Report Formatter (RPF) reads a file which contains text
for the report, database-derived information produced by RPT,
and RPF commands. RPF then writes a file that contains the
text of the original file, arranged as directed by the RPF
commands. In addition to the imbedded RPF commands, the
final format is also controlled by the choice of RPF options,
which are selected at the start of RPF execution. The file
read by RPF is usually constructed by the use of a text
editor; then RPT is executed first, to process commands to
derive database information for the report, then RPF is
executed to format all of the report information for

printing.

In addition to the use described above to generate an ORACLE
report, RPF can also be used alone as a general-purpose
formatting program for a variety of word processing
applications, such as correspondence, memoranda and reports
such as this manual, which is itself produced using RPF.

3.2 RPF Input

Input to RPF consists of text and RPF commands, intermixed in
the input file. The basic unit of text data is a word which
is a string of one or more characters terminated by a blank,
tab, carrier return, or form feed (newline) character. The

input string:
The boy went<tab>to the<cr> store.

contains the following six words: "The", "boy", "went", "to",
"the", and "store". Blanks, tab, carrier return, form feed,
and characters serve only as delimiters and have no effect on

the placement of words in the RPF output.

3.2.1 RPF Command Format

RPF commands control the placement of words in an output
line, horizontal and vertical margins, page numbering and
control, horizontal and vertical spacing, line skipping, etc.

All RPF commands start with either a pound sign (#) or period
(.). The "#" or "." may be used interchangeably without
affecting the meaning of the command. Words which begin with
a "4" or "." but are not valid commands will be treated as
text. To produce output that is identical to a valid
command, the valid command is preceded with an additional "."
nr "#". For example, #b is a command to insert a blank line,

but #4b will be treated as text and output as $b.

Commands may be specified in upper orv lower case characters.
Each command may be followed by one or more parameters.
Commands and their associated parameters are separated by one
or more blank, tab or form feed character. A single "." or
"gn jis used to terminate commands which have a variable
number of parameters, or operate on a group of words (e.g.
centering, underlining, etc.).

3.3 Tables and Columns

RPF processes text one word at a time, placing each word into
the output line within the boundaries of the current column.
A column is defined by its starting and ending character
position. Words are placed into columns separated by at
least one blank character, beginning with the first character
position, and extending to the end of the column. Words are
indivisable, and are not split across the lines of a column.
Therefore, a word's length must be less than or equal to the
width of the current column, or an error indication will be
given by RPF.

The width of a column is equal to the last character position
minus the first character position plus 1. The last word is
aligned with its last character placed in the last column
position. Any additional spaces introduced by alignment are
evenly distributed throughout the line.

Figure 3.1, Example 1 shows the text of Lincoln's Gettysburg
Address placed in a column beginning in position 1 and
extending to position 132. Note that all lines except the
last are right justified.

cxample 1: Default Table

1

\
+===
|

v " Table 1 - Column 1 "
et
"Fourscore and seven years ago our fathers

cnontinent a new nation, conceived in 1liberty,
proposition that all men are created equal.

Example 2: Define Table Within Current Column of

1 4
v Vv
+==+==
|
v " Table 1 - Column 1 "
F e ———————— e —
|
v " Table 2 - Column 2 "
e

"Fourscore and seven years ago our fathers b
forth on this continent a new nation, concei

21

brought forth on
and dedicated to the

Previous Table

76 132

v v

=====4=m==============+4

I

v

————— ettt b bl D
I
\Y
———>+
rought
ved in

liberty, and dedicated to the proposition that all

men are created equal.

TABLES AND COLUMNS

Figure 3.1 - Part 1 of 2

1 4 1
v v
t==4=====
|
v
|
v
+<-———
Table 3

0 25
v v
+=========:====+

" Table
fomm +
| I
| " Column 1 " v
+{——mmmm - ———— >+
6 22
"Fourscore and
seven years ago
our fathers

brought forth on
this continent a

new nation,
conceived in
liberty,

30 45
v v
==+==============+

———— ——— ——— o —— —

26 41
and dedicated to
the proposition
that all men are
created equal.

TABLES AND COLUMNS

Figure 3.1 - Part 2 of 2

A table consists of from 1 to 20 columns, and defines the
boundaries for word placement in the current line. The

default table shown in Example 1 contains one column, and
serves as the initial table definition. Other tables may be
defined, and invoked within the boundaries of the current

conlumn.

Example 2 of figure 3.1 shows a second table which has been
invoked within the single column of the default table. This
table has one column which extends from the 4th position to
the 76th position. The text of Example 1 is rvreformatted
within this new table and column definition.

A table is always invoked within a column, and its column's
character positions are counted relative to the beginning of
that column. Example 3 shows a third table which contains
two columns; the first begins in relative position 6 and ends
in position 22 and the second begins in trelative pnsition 26
and ends in peosition 41. This table has been invoked within
the single column of table 2. Since the column in Table 2
begins relative position 4 of the single column in the
default table, the columns of Table 3 begin in absolute
locations 10 and 30.

A table must fit within the column in which it is being
invoked; that is, the length of the table must be less than
or equal to the length of the column. The length of a table
is equal to the last character position of the last column
defined in that table. For example, Table 3 has a length of
41 (the second and last column extends from position 26
through 41). Therefore, this table can fit within the
current column, whose length is 73 (76-4+1).

In Example 3, the sample text has been partially displayed in
both columns of the table. RPF will place words into the
current column until a command to advance to the next column
is encountered. In this example, a "next column" command
after the word "liberty," causes RPF to place the remaining
text into column 2

Commands to define and invoke tables and advance the column
position are presented in detail in seciion 00.

3.4 Imbedded Blanks

Sometimes it is necessary to preserve a specified number of
blank spaces between two words. Normally, the number of
blanks between words in the input file is ignored, and RPF
will separate words by single blanks. A back slash character

fnllowed by a blank is used to include additional blanks in
the output, as illustrated by this example:

Input Text Ouput Text
1- Abraham Lincoln Abraham Lincoln
2- Abraham Lincoln Abraham Lincoln
3- Abraham \ Lincoln Abraham Linconln
4- Abraham \ \ Lincoln Abraham Lincoln
5- Abraham\\Lincoln Abraham\Lincoln

Lines 1 and 2 show normal RPF operation. The combined "\
causes a second blank to be included in line 3 and a third in
line 4. The double back slash on line 5 informs RPF that it
is desired to have a "\" printed in the output text, as
opposed to reserving blanks. A single "\" in the text will
be ignored.

3.5 RPF Commands

This section will discuss each RPF command in detail. The
commands will be presented in alphabetical order, and no
attempt will be made to demonstrate their interrelationship.
Figure 3.2 provides a summary of these commands.

5-25

.APN | Alternate Page Number: placement for even !

| numbered pages.]
----------- T ettt
.B | Blank: Insert one blank line in output text.|
——————————— N
.CEN | Center: Center following text in current |

| column. l
——————————— e
.CL | Column Literal: Suspend formatting for the |

£ollowing lines in the current column
.CS | Column Skip: Skip 'n' lines in current I

| column l
——————————— I----—m-——————————————————-————-————————————~—I
.CUL | Center With Underline: Center and underline |

| the following text within the current column|
——————————— | mmm e m e |
.DT | Define Table: Define the column boundaries |

| for the specified table. |
----------- | oo mmmmmmmmmmmmmmmmmm——mmmmmmmmmmm—mm oo |
.F | Figures: Reserve specified page numbers |

| in output document for figures, charts, etc.|
——————————— | mmmmm e e e |
.HS | Horizontal Spacing: for characters on |

| Diablo type printer |
——————————— A
.1 | Indent: Ident the following text in current |

| column. |
----------- | mmmmmmmmmmmmmmmmmmmmmmmmmm o mmm oo |
.L | Literal: Suspend formating for the following|

| text lines; column definitions are ignored. |
___________ |_______-_____________________________________|
.N | New Line: in the current column. |
——————————— | mmmm e mm e e e — |
.NC | New Column: Advance to next column |
----------- T
.NP | New Page: End current and start new page. |

| === e
. PAGE | Page: Define top and bottom page boundaries |

___ +

RPF Commands

Figure 3.2

| .P | Paragraph: New line to be started within |
| | the current column, indent 5 spaces at the |
[| beginning of the line. I

| .PAUSE | Pause: Pause outputting to terminal until |
| | signal from operator |
[e i |
| .R | Right Justify: Set/reset switch to right |
| | justify all text placed in current column |
et |
| .S | Skip: Skip specified number of lines |
R et e I
| .SP | spacing: Define spacing for current column |
| m— e s — e |
| .SPN | start Page Numbering: specify page numbering]
IR e [
| .T | Table: Invoke specified table within the [
| | current column |
I s |
| .TE | Table End: Terminate table and revert to |
| | previous column definition |
S T !
| .UL | Underline: Underline the following text. |
AR EEESERE S S |
| .vSs | Vertical Spacing: Define vertical spacing |

I | for Diablo type terminal. |

RPF Commands

Figure 3.2 (Continued)

5-27

For the purpose of the following command discussions two
pointers will be introduced. The column pointer identifies
the current column within the active table. The line pointer
identifies where the next line of text for a column will be
outputted. Each column has its own line pointer. For some
commands, diagrams will be provided to exemplify the movement
of these pointers. The following diagram shows a two column
table with the column pointer positioned to column 2. Column
2's line pointer points to line 1, while Column 1l's line
pointer points to line 4.

Column 1 Line Column 2
|-———=m— === | Pointer --> |

!
Line [m——m e | |~ |
Pointer [-------=---= l | \ Column Pointer
|

-=> | [|

3.5.1 Alternate Page Number

This command is used to define the character position where
the page number will be printed for even number pages. If
both sides of the paper are used during reproduction, this
command will allow even numbered page numbers to appeat on
the outside edge of the page. See #SPN command for details

on page numbevring.
.APN <position>

<position> is the absolute position that the
first character of the page number
will be placed on even numbered
pages.

3.5.2 Blank

This command causes one blank line to be inserted, and is
equivalent to #S 1. This command affects all the columns in
a multi-column table. Refer to #S command for details on the

advancing of column and line pointers.

.b

3.5.3 Center

This command causes the specified text to be centered within
the current column. The centering takes place on the next
line and includes all the words between the command and the
first unattached "." or "#". The centered text must fit

within the current column.

CEN <text> .

<{text> . is the collection of words to be
centered. Note that standard
formatting is performed; multiple
blanks, and tab and form feed
characters are ignored.

3.5.4 Column Literal

This command defines one or more lines of text which will be
outputted in the current column without formatting. Each
line will be sent to the output terminal exactly as entered,
including multiple blanks, tab characters and form feed
characters. The length of each line must not exceed the

width of the current column.

.cl

<text lines>

<text lines> lines of text sent unformatted to
output terminal

3.5.5 Column Skip

This command causes the specified number of blank lines to be
inserted into current column. This command has no effect on
any other column. The following diagram shows two blank
lines inserted into column 2 whereas these lines need not be
blank for columns 1 and 3.

Column 1 Column 2 Columns 3
e | mmmmmm e | |-
O | | | -—--1
| -——mmmmm o | ! |-—=-1
R I ! |--—-1
| == m oo R B ! | -1

.CS <no. lines>

<no. lines> is the number of blank lines
inserted.

3.5.6 Center With Underline

This command causes the specified text to be centered within
the current column and underlined. Centering takes place on
the next line and includes all words between the command and
the first unattached "." or "#". The centered text must fit

within the current column.
.CUL <text> .

<{text> is the collection of words to be
centered and underlined. Note that
standard formatting is ©performed;
multiple blanks, and tab and form
feed characters are ignored.

29

3.5.7 Define Table

This command defines a table and its associated columns. The
command does not cause the table to be invoked. For
information on invoking a table, refer to section 3.5.21

(Table Command) .
.DT <table id> <spl> <epl> <sp2> <ep2> ... <spn> <epn> .

<table id> is a number from one to ten which
identifies the table.

Specifying a previously used
<table.id> will cause the old
definition to be replaced with the
new definition.

<spn> <epn> Each pair of numbers defines the
boundaries of a column.

<spn> is the starting position of the
nth column relative to the beginning
of the table.

<epn> is the ending position of the
nth column relative to the beginning
of the table.

The boundary of a column includes the
starting and ending column positions.

The starting position of a column
must be at least one greater than the
ending position of the previous
column.

At least one column must be defined
in a table.

If the ending position of the last
column is less than or equal to zervo,
the ending position will default to
the end of the column in which the
table is being invoked. Extending
the last defined column to the end of
the invoking column causes the right
margin to be right justified.

The .DT command is terminated by a single unattached "." or
”"
#ll .

Example:

.DT 1 12 24 32 48 . This command defines a table with an
id of 1 which contains two columns.
The first extends from position 12 to
position 24, and the second from
position 32 to position 48.

DT 1 13 73 . Two one column tables are defined.

.DT 2 5 0 . The single conlumn of table 2 extends
from position 5 to the end of the
column in which it 1is invoked. If
table 2 was invoked within table 1,
the output text would be right
aligned.

3.5.7 Figures

This command reserves the specified page numbers for figures,
charts, diagrams, etc. If page numbering 1is wused, the
specified page numbers will be omitted from the output

document.
.F <pgnol> <pgno2>

<pgnol> Is the page number to be skipped in
the output document.

This command is terminated by a single unattached "." ovr "#".

3.5.8 Horizontal Spacing

This command is used to set the horizontal spacing on the
Diablo printer terminal.

.HS <spacing>

<spacing> is the number, when multiplied by
1/60 of an inch, will determine the
spacing from one character to the
next. For example, a value of 6 will
provide spacing of 1/10 of an inch,
yielding 10 characters per inch.

Note: The spacing between words is
variable and beyond the user's
control, but 1is as <close to the
defined spacing as possible.

The default value is 6, or 10 lines per inch.

32

3.5.9 Indent

This command is used to indent the following text within the
current column. It is a shorthand way to define and invoke a
table with one column, which begins the specified number of
spaces within the current column and extends to the end. For
example, .I 5 is equivalent to invoking the table defined by
.DT 150 . . The indenting is terminated when a .TE command
is encountered. This command follows the same rules used in

invoking tables.
.I <indent-number>

<indent-number> is the number of spaces to indent the
following text

3.5.10 Literal

This command defines one or more lines of text which will be
written exactly as entered without formatting. Commands
embedded within these lines are ignored and treated as text.
Table and column definitions are suspended, with each output
line beginning in position 1. Literals are the only case
where multiple blanks, tab characters and form feed
characters can be explicitly included in the output document.

The command is terminated when a "." or "#" is encountered in
the first character position of a line. Any other text on
this terminating line is ignored.

.L

<text lines>

<text lines> are the 1lines which are sent
directly as entered to the output
terminal.

3.5.11 New Line

This command causes a new line to be started in the
current column. Note that an automatic .N command 1S
issued whenever any other command is encountered (e.g.

#T, #B, etc.).
.n
3.5.12 New Column

This command causes the current column to end and the
next column to be started. If the current column is the
last column in the table, the first column of the table

is started.

If the current column contains multiple lines, .NC will
cause the text to be placed in the top line of the new
column. This is shown in the following diagram:

I

| =====—====- B Rl | " |
| \ Place text after #NC
|

in previous column

Advancing to the first column will cause each column's
line pointer to be set to the line following the longest
cnlumn.

__Place text after #NC

3.5.13 New Page

This command causes a new page to be started.

.NP

34

3.5.14 Paragraph

This command causes a new line to be started within the
current column, and five spaces to be inserted at the

beginning of the line.

.P

3.5.15 Page

This command defines the top and bottom margins of a
page.

.PAGE <top-line> <bottom-line>
<top-line> is the number of lines skipped

from the top of the page before
outputting text.

<bottom-line> specifies the last line on the
page where text will be
outputted.

Line number one is the first line of the page. When a
page is full RPF will automatically skip to the next
page. See Section (3.6.3) for a discussion of page
advancing and printer form feed.

3.5.16 Pause

This command causes RPF to pause and wait for a single
character to be input from the output terminal. Any
character is acceptable, and will cause the printing to
resume. The entered character will not be printed. The
purpose of the pause is to allow the operator to adjust
the form or change the paper before printing will

continue.

The .PAUSE command is ignored if the PA switch is not
selected when RPF is invoked. See section 3.6.4 for

details on the PA switch.

.Pause

3.5.17 Right Justify

This command causes the text within the current column to
be right justified. Right justification is most useful
for aligning a column of numbers. The default for any
column is left justification.

-R

This command sets a switch which indicates that all text
placed in this c¢olumn will be right justified. Right
justification will remain in effect for this column until
another .R command is issued or the table is terminated.

3.5.18 Skip

This command causes the specified number of lines to be
skipped. This command should be specified while
positioned in the first column of a line; skipping will
effect all columns across the line.

.S <no. of lines>

<no. of lines> is the number of 1lines to be
skipped

Following a .S , text output will resume at the beginning
of the current column (automatic new line - .N).

3.5.19 Space

This command sets the spacing in the current column. The
default is single spacing.

.SP <spacing>

<spacing> is a number indicating the
spacing for the current column.
For example, .SP 3 will cause the
spacing to be set to triple
spacing.

The spacing value will remain in effect until another .SP
command is issued When a table is invoked, all the
columns in that table will take on the spacing value of
the column in which it was invoked. When a table is
terminated, a column's spacing value will revert back to
the value when the table was invoked.

Each column within a table may have a different spacing
value.

3.5.20 Start Page Numbering

This command defines page numbering. Parameters specify
the starting page number, type of numbering, and
placement of the number on the page.

.SPN <type> <pos> <skip-lines> ¢start-number>
[<sect-number>]

<type> is the number 1, 2, or 3
indicating the type of numbering:

1- Section Page Numbering:
The page number is printed as
m-n, where "m" is the section
number and "n" 1is the page
number.

2 - Letter Page Numbering:
The page number is printed as
-n-, where "n" 1is the page
number. If the page number
is one, the page number is
not printed.

3 - Perind Page Numbering:
The page number is printed as
n. , where "n" is the page
number.

<{pos> is the starting character
position where the page number
will be printed.

Note: Page numbering is always
printed on the first printable

line on a page. See section
3.2.15, # PAGE command for
defining page margins.
<skip-lines> is the number of 1lines to skip
after printing the page number.
<start-number> is the number of the first output
page.
<{sect-number> is the section number "m", if

type 1 page numbering has been
selected. Invalid for the other
numbering types.

For example:
.cen .SPN 1 70 41 2 .

will cause Section Page Numbering to be used, beginning
at page 2-1 of section 2 . The page number will be
printed on the first line, beginning in position 70 , and
4 lines will be skipped before text will be printed.

5-38

3.5.21 Table

This command invokes the specified table within the
current column. The column boundaries defined in the
invoked table are interpreted relative to the start of
the current column.

Text following the .T command is placed in the first of
the invoked table. Placement of text in other columns is
accomplished by wusing the .nc command. A table |is
terminated with a .TE command.

.T <table id>

<table id> is the table number specified
when the table was defined (See
.DT command, Section 3.5.7).

Refer to Section 3.3 for a detailed discussion of Tables
and Columns.

3.5.22 Table End

This command indicates the end of a table. When a table
is ended, the column in which the table was invoked is in
force, and text output will continue at the beginning of
that column.

3.5.23 Underline

This command causes the specified text to be underlined.

-ul <text>

<text> is the text to be underlined.

The underlined text is terminated by the first unattached
ll.ll Or ll#ll.

3.5.24 Vertical Spacing

This command is used to set the vertical spacing on the
Diablo printer terminal.

.VS <spacing>

<spacing> is the number, when multiplied by
1/48 of an inch, will determine
the spacing from one line to the
next.

For example, a value of 8 will
provide spacing of 1/6 of an
inch, yielding 6 lines per inch.

The default value is 8, or 6 lines per inch.

5-40

3.6 Executing RPF

The Report Formatter (RPF) is invoked from the user's
terminal. output can be directed back to the invoking
terminal, or to any other terminal or line printer device
including the system spool printer

To execute RPF enter the following command:

RSX-11M,VMS

RPF <output-dev>[/SW.../SW]=<input-file>

UNIX
RPF <input-file> <output-dev> [-SW .. -SW]

<input -file> is the name of the input text
file. For RSX-11M and VMS, if

the file name extension is not
specified, the format
<input-file>.RPF is assumed.

<output -dev> is the name of the output device.
For RSX-11M and VMS, valid names
are TT4:, TI:, LP:, or SPOOL for
the spool printer. ,

For UNIX, valid device names are
/dev/ttye, /dev/1lp, /di etc.

One or more switches (SW) can be specified to control the
execution of RPF. The order of specification is not
significant, and switches can be expressed in upper or
lower case characters. The following sections describe

each switch in detail.

5-41

This switch will cause the entire output document to be
printed in bold face. Bold face printing is supported
only on the DIABLO terminal. For other terminal types
the switch is ignored. The BF (Bold Face) switch must
also be specified.

3.6.2 Bold Face ~-- BF

This switch will cause all underlined text to be printed
in bold face. Bonld face printing is supported only on
the DIABLO terminal. For other terminal types the switch
is ignored.

3.6.3 Form Feed -- FF

This switch will cause a form feed character to be sent
to the terminal prior to printing a page. If not used,
the appropriate number of blank lines are printed to
position the top of the next page. RPF assumes a 66 line
page when inserting blank lines. Forms of other lengths
requires the use of FF for positioning.

The switch is ignored for terminals which do not support
a form feed character.

3.6.4 Pause —-- PA

This switch will cause RPF to suspend printing at the end
of each page and when a .PAUSE command is encountered.
Printing is resumed after any input character is entered.
The entered character is not printed.

Pause allows documents to be printed on cut forms, and
for special setup during the printing process. The
command will be ignored if PA was not specified.

3.6.5 Page -- PG:n[:m]

This switch will cause a range of pages to be printed,
from n to m. For example:

PG:5 ——- Print the fifth through the last page.
PG:5:7 --- Print pages 5, 6, and 7.
PG:5:5 --- Print only page 5.

3.6.6 Upper Case —— UC

This switch will cause all alphabetic characters to be
printed in upper case.

3.6.7 VT100 —— VT

This switch will cause all underlined text to be output
in reverse video. If not specified for a video display
terminal, underline text will be displayed then
overwritten with underline characters.

USING T HE

REPORT WRITER UTILITY

4.1 Overview

This sectinon will demonstrate by example how Report Writer
statements are combined with RPF commands and user text to
generate a complete veport program. The approach will be to
present the output report along with the generating program.
The discussion will centetr around the report structure and
the Report Writer statements. A working knowledge of RPF is
assumed, and individual commands will not be discussed. It
is recommended that the reader refer to sections 2 and 3 to
nbtain the necessary RPF background.

4.2 Example 1 - Tabular Report

Figure 4.1A is a listing of a simple tablular report. The
data for this report was obtained from the 'EMP' table within
the ORACLE demonstration database ('PERSONNEL'). The report
program which generated this report is listed in Figure 4.1B.
The line numbers and titles were added after execution.

To aid the reader in distinguishing between RPF commands and

RPT statements, all RPF commands will use the '#' instead of
the '.'. Either symbol 1is allowed, but this convention
simplifies the reading and debugging of report programs.
Other conventions have also been .adopted which simplify the

report writing process.

43

TECHNOLOGY

NAME

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
OATES
TURNER
ADAMS
JAMES
FORD
MILLER

JOB

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN
MANAGER
MANAGER
ANALYST
PRESIDENT
SALESMAN
CLERK
CLERK
ANALYST
CLERK

SYSTEMS,

PERSONNEL REPORT FOR SEPTEMBER,

SALARY

$800.00
$1,600.00
$1,250.00
$2,975.00
$1,250.00
$2,850.00
$2,450.00
$3,000.00
$5,000.00
$1,500.00
$1,100.00

$950.00
$3,000.00
$1,300.00

END OF REPORT

"gxample 1 - Tabular Report *

Figure 4.1-A

I

N C

COMMISSION

$300.00
$500.00

$1,400.00

DNO

20
30
30
20
30
30
10
20
10
30
20
30
20

WO UTDdWN -

5-45

REM ***

.REM ***x%*%* SAMPLE REPORT 1 ----- SIMPLE TABULAR REPQORT ‘**xk ks
.REM ***

. REM
.REM **x*xkkk% Define RPF Tables -—-— Print Title

.REM
.REM " 7T abl e 1"
VREM 4 m oo e -

.REM 4
.REM "'Table 2"

.REM +——-+ +-——=-————- + - + H+-————————- + +
.REM 1 5 10 20 25 35 40 50 55 65 67 O
.REM

#dt 1 4 76 #

#dt 2 1 5 10 20 25 35 40 50 55 65 67 0 #

#t 1

#page 6 58

$#s 3

$cul TECHNOLOGY\N\NSYSTEM S, \N\N INC#

$#s 3

#cul PERSONNEL REPORT FOR SEPTEMBER, 1980 #

#s 3

.REM

.REM **%kkkx Declare Program Variables kkkkkkhk
.REM

.DATABASE personnel

.REM *****%* print all positions of empno - ie. 0682
.DECLARE empno 0999

.DECLARE ename alo

.DECLARE job alo0

.DECLARE sal $99,999.99
.REM ******* print 'comm' as blank if value is zero ***kkkkkkkkkkx

.DECLARE comm $B99,999.99

.DECLARE deptno 99

.REM

.REM **kkkkikk Define SELECT
.REM

.DEFINE selemp
SELECT empno,ename,job,sal,comm,deptno

INTO empno,ename,job,sal,comm,deptno
FROM emp

khkkkkkkk

khkkkkkkh

Macro khkkkkhkk

"Example 1 - Tabular Report"”

Figure 4.1B - Part 1 of 2

43:
44:
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:

46

.REM

JREM **kkkkx*

.REM

.DEFINE body

.REM ****%x%* print each column variable
.PRINT empno

Define BODY Macro

khkkhkkkkk

—— Advance to next column ***xx*

#nc

.PRINT ename

#nc

.PRINT job

#nc

.PRINT sal

#nc

.PRINT comm

#nc

.PRINT deptno

#nc
. REM
.REM ***kxkkk% Define HEAD Macro *okkkokk
.REM
.DEFINE head

.REM **** Invoke "Table 2" - Report Column Layout khhkkhhhk

$t 2

.REM **kkkkkdkkkx Print Column Headings ****&&kk&X

#r EMPNO #n ----—- #nc

NAME $n ---- #nc

JOB #n --- #nc

$r SALARY #n ---———- #nc

$r COMMISSION #n ---——-————-- $nc

#r DNO #n -—-- #nc

#b

.REM **%%*x**** Execute body macro to print first row **rk¥x

.body
.REM
.REM **kkkkdkkk Define Foot Macro *hkkkkkk
.REM
.DEFINE foot

fte

#s 4

#cul END OF REPORT #
.REM
.REM *****%x%* procedure Section --- Generate Report kkkkkkkk
.REM
.REPORT selemp body head foot
fte
.STOP

"Example 1 - Tabular Report"”

Figure 4.1B - Part 2 of 2

The reader should be reminded of the basic rules which apply
to RPT:

- RPT's main function is to copy RPF commands and
user text, as encountered, to the interim file which
will subsequently be processed by RPF. Database
information can be included within this output file
using the PRINT command.

- Program variables and macros (Procedural and
SELECT) must be defined prior to being referenced.
Macro definitions are stored as encnuntered, and not
executed until explicitly or implicitly requested.

- RPF commands and user text may be defined anywhere
within a program.

The basic structure for this report is depicted in figure
4.1C. The .REPORT statement drives the retrieval of data and
causes the appropriate head, body, and foot macros to be
executed. The SQL query defined within the 'selemp' macro
(lines 38 through 42 of figure 4.1B) selects all the columns
from all the rows in the 'EMP' table. The procedural macros
used to output and format this data will be discussed later.

The RPF table definitions used to format the output are
pictorially displayed on lines 8 through 12. The data fields
returned for each row will be formatted in the six columns
defined by Table '2'. Lines 14 through 22 contain the RPF
commands to define these tables and the report titles. These
commands could also have been included after the program
DEFINE and DECLARE statements.

Line 26 identifies the single database which will be

referenced within this report. Since the ‘'personnel'
database is secure, a valid ‘'userid/password' must be
specified when the report is executed. Following the

'DATABASE' statement the program variables are declared. The
declarative statements may be specified in any orvder,
providing the definition precedes its use.

47

.REPORT = ——————m————m
/ \
/ "selemp" \
\ /
\ /
I
I
|
head body | foot
o + o + T e ettt
| I I | I
| "head" | | "body" | | "foot"
I I I | |
o —— + N e + o —

« REPORT selemp body head foot

"Example 1 - Tabular Report®

Figure 4.1C

By specifying a '0' in the format definition of 'empno', all
leading zero digits will be printed. Remember that the
declared format defines the maximum value of a variable in
addition to the printing format. For example, 'sal' (line
31) can hold a maximum value of 99,999.99; 100,000.00 will
overflow this variable. Overflowed variables will be print
with a '#' in all digit positions. The 'B' on line 33 will
cause zero commission value to be printed as blanks. Any
variable which has the 'NULL' value will be printed as

blanks.

The 'selemp' SELECT macro defines the SQL query which drives
this report. The INTO statement 1identifies the program
variables which will receive the column values defined in the
select list. There is a one-to-one cotrrespondence between
each column returned and its associated program variable.
Column and variable names do not have to be the same.

Lines 43 through 88 define the head, body, and foot
procedural macros which will be implicitly executed as a
result of executing the '.REPORT' statement on line 89. The
head macro called 'head' will be executed once for the first
row rtreturned from the query. Table '2' 1is 1invoked to
establish the six column print layout. RPF commands and user
text is included to print the column headings (lines 67 -
74) . Notice the "$#r' command to establish right
justification for the empno, salary, commission, and
department number columns. After inserting a blank line the
body macro is explicitly executed (Line 76). This will cause
the first row to be printed. If omitted, the first row of
data would be lost.

The body macro ('body') is implicitly executed for the second
through last row returned. A '.PRINT' statement is used to
cause the current value of the program variable to be
included in the output interim file. Figure 4.1D 1is a
partial listing of the generated 'interim file'. The '#nc'
commands causes the row information to be printed in the
correct report column. Notice the database information which
has been interspersed between the RPF commands.

After the last row of the query has been processed, the foot
macto (Lines 81-85) is executed. In this example the foot
simply terminates Table '2' and prints 'END OF REPORT' .

#dt 1 4 76 #

#dt 2 1 5
$t 1

10 20 25 35 40 50 55 65 67 0 #

#page 6 58

$s 3

#cul TECHNOLOGY\N\NSYTEMS, \ \

#s 3

#cul PERSONNEL REPORT FOR SEPTEMBER, 1980 #

#s 3
#t 2

$r EMPNO #n ---—-—- #nc
NAME #n ---- #nc
JOB #n --- #nc

#r SALARY
#r COMMIS
#r DNO #n
#b

7369

$nc

SMITH

$nc

CLERK

#nc
$800.00
#nc

$nc

20

$nc

7499

#nc
ALLEN
#nc
SALESMAN
$nc
$1,600.00
$nc
$300.00
#nc

30

$nc

7521

$nc

WARD

#nc
SALESMAN
#nc
$1,250.00
#nc

$n —————- #nc
SION $n —-———-————— #nc
-—-— #nc

* Example 1 - Tabular Report - ‘'Interim File'’

Figure 4.1D

I NC #

Following the '.REPORT' statement in the procedure section is
a '.te' to terminate Table 'l' and a '.STOP' statement to
terminate the report program. The 'STOP' is optional, and if
omitted the program would end after the last statement. When
included, a stop message is displayed on the executing
terminal.

Report generation is a two step process. This report was
generated using the following system commands:

Step 1 - RPT Execution:
>RPT sampl.rpt sampl.rpf SCOTT/TIGER

Where 'sampl.rpt' is the input report text file, and
'sampl.rpf' is the interim file created by RPT.
Since the 'PERSONNEL' database is secure, a valid
userid and password must be provided. Note: The '>'
is an RSX11M system prompt, and will vary by
operating environment, however the command text is
the same across the supported systems.

Step 2 - RPF Execution:

>RPF LP:=sampl

Where 'LP:' 1is the system name for the output
device. The output may be directed to either a
system device or another file. The input file is
the file created by RPT in the previous step. Since
no file extension was specified, 'rpf' was assumed,
and the fully qualified name 'sampl.rpf' is used.

4.3 Example 2 - Nested Report

Figure 4.2A is a listing of a nested report. A nested report
is one in which a second report is executed within the head,
body, or foot macro of the primary report. In this example,
the primary or 'outer' report, provides a listing of the
department names and numbers for each department within the
division. Then for each department selected, a second report
is executed which lists the employees in that department.
After listing the individual employees, the department's
salary summary is reported.

51

by Department

RARRR AR R AR AR AR AR AR R R AR R R R R R AR RRARRRRRRRRRRRAARAAREEA RS

DEPTNO: 010 - - DEPTNAME: ADMINISTRATION

ARERRRRRRRARRRRRRRRRRRRRRARRRRRRRRRRRRARRAARERRARARRA AN

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7782 CLARK $3162.50 $37,950.00
7934 MILLER $1300.00 $15,600.00
7839 OATES $5750.00 $69,000.00

Department Summary = —o—==—=——oss

AVG = $3,404.17 MIN = $1,300.00 MAX = $5,750.00 $122,550.00

S Y Y T 223222223 2222222322222 22222 2 2 2 2 2 2 22

DEPTNO: 020 - - DEPTNAME: RESEARCH

Y 222 2222222222222 IS 222222 22 2 22 2 2 2 % 2 4 224

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7369 SMITH $800.00 $9,600.00
7566 JONES $3421.25 $41,055.00
7876 ADAMS $1100.00 $13,200.00
7788 SCOTT $3000.00 $36,000.00
7902 FORD $3000.00 $36,000.00
7955 WILSON
7956 JAKES $1000.00 $12,000.00

Department Summary 0@ ——-—-—==-----

* Example 2 - Nested Report "

Figure 4.2A - Part 1 of 3

5-53

AVG = $2,053.54 MIN = $800.00 MAX = $3,421.25 $147,855.00

******t**********ir*****t*t********t*******t***********

DEPTNO: 030 - - DEPTNAME: SALES

*****************ﬂtt********i***t*i**ti**t********t***

EMPNO NAME MONTHLY COMM ANNUAL
SALARY COMPENSATION
7499 ALLEN $1600.00 $300.00 $19,500.00
7521 WARD $1437.50 $500.00 $17,750.00
7698 BLAKE $3277.50 $39,330.00
7654 MARTIN $1437.50 $1400.00 $18,650.00
7844 TURNER $1500.00 $0.00 $18,000.00
7900 JAMES $950.00 $11,400.00
7989 CARTER $1500.00 $0.00 $18,000.00

Department Summary = TTTTmTomToTo

AVG = $1,671.79 MIN = $950.00 MAX = $3,277.50 $142,630.00

*****t*i*i*******ikt**************t****i***************

DEPTNO: 040 - - DEPTNAME: OPERATIONS

**********ti*t***ﬂt**i***t**t****************i*******i

“Example 2 - Nested Report®

Figure 4.2A - Part 2 of 3

Division Totals

MINIMUM MAXIMUM AVERAGE
SALARY SALARY COMPENSATION
$800.00 $5,750.00 $25,814.69

End Of Report

*Example 2 - Nested Report®

Figure 4.2A - Part 3 of 3

TOTAL
COMPENSATION

$413,035.00

A block diagram of this example is provided in Figure 4.2C.
The 'inner' report which lists the employee information is
explicitly executed within the body macro ("deptbody") of the
'nuter' department report. Associated with this 'inner'
report are head, body, and foot macros labeled "emphead",
"empbody", and "empfoot". Notice that within the "empfoot"
macrn, two other macros are explicitly executed. The
"deptsum"” select macro uses a SQL query to compute the
summary salary information. The procedural macro "compsum"
adds the department summatry to the division totals. The
division summary is generated by the "deptfoot" macrto after
all departments have been processed.

Figure 4.2B is the program listing for this example. The
line numbers and titles at the bottom of the page were added
after the report was executed. The data for this report was
obtained from the 'DEPT' and 'EMP' tables within the
'PERSONNEL' database (Line 16).

This report contains three SELECT macros. "seldept" (Lines
42-46) drives the outer report berequesting each department's
name and number from the 'DEPT' table. The absence of the
"WHERE" clause will cause all the rows in the table to be
returned. The "selemp" macro will drive the inner report
returning all the employees in a particular department. The
substitution variable 'sdeptno' will cause the current value
of the program variable 'deptno' to be substituted into the
"WHERE" clause.

The fifth value returned in the SELECT list(Line 51) is the
computed annual compensation. The null function was required
for the 'comm' column because all employees other than
salesman have a null value for commission. If 'nvl' was
omitted the annual compensation for non-salesman would be
assigned the null value and printed as blanks.

The "deptsum" SELECT macro is explicitly executed in the foot
macro of the inner report. After all the employees in a
department have been listed this query uses the SQL built-in
functions to compute the count, minimum, maximum, average,
and sum of the salaries for the reported department. This
technique for computing summary information requires a second
pass of the data.

001:
002:
003:
004:
005:
006:
007:
008:
009:
010:
011:
012:
013:
014:
015:
0l6:
017:
018:
019:
020:
021:
022:
023:
024:
025:
026:
027:
028:
029:
030:
031:
032:
033:
034:
035:
036:
037:
038:
039:
040:
041:
042:
043:
044:
045
046:
047:
048:
049:
050:

5-56

* % %

k%
* %k %k

.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.DATABAS
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
.REM **
.REM
. REM
.REM
.REM
.REM
.REM
.REM
.DEFINE

* %k %

* %

.REM
.REM
.REM
.DEFINE

ek
¢k

xxxx** SAMPLE REPORT 2 NESTED REPORT **

to nest a report within the

This sample demonstrates the capability
In this example the "payroll

head, body, or foot of another report.
status for each department within a division will be reported. The
compensation for each employee is listed , followed
by the department's summary information. At the end of the report
the entire division's summary information is reported.

Decl are Vvariables

E personnel

deptno 000

dname alb5

empno 0999

ename alb

monsal $9999.99
comm $9999.99
annsal $99,999.99
deptsum $999,999.99
deptmin $9,999.99
deptmax $9,999.99
deptavg $9,999.99
deptcnt 9999

divsum $999,999.99
divavg $99,999.99
divmin $9,999.99
divmax $9,999.99

empcnt 9999

De fine SELECT Macroos

Information

Select Department

seldept
SELECT deptno,dname

INTO deptno,dname

FROM dept °
Select Emplnyee Data Within a Department

selemp

* Example 2 - Nexted Report Program Listing

FPigure 4.2B - Part 1 of 5

{

051:

O_o:
054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:

077:

019;
080:

081:

-

082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
098:
099:
100:

o o

.REM
.REM
.REM
.DEFINE

SELECT empno,ename,sal,comm,(sal*l2 + nvl (comm,0))
INTO empno,ename,monsal,comm,annsal

FROM emp

WHERE deptno = &deptno

Select Department Summary Information

deptsum
SELECT count(sal),min(sal),max(sal),avg(sal),sum(sa1*12+nv1(comm,0

INTO deptcnt,deptmin,deptmax,deptavg,deptsum
FROM emp

WHERE deptno= &deptno

.REM
.REM
. REM
.REM
.REM
.REM
.REM
.REM
.DEFINE

.REM
. REM
.REM
.DEFINE

**

De fine Procedural Macros

**
Diwvision Report "He ad"

depthead
.REM This head macro just processes the first row of

.REM Department report. It is required only because a foot
.REM is specified on the REPORT statement.
.deptbody

DEPARTMENT Report "Body"

deptbody
.REM
. REM Ex ecute Employee Report
.REM
.REM Print Heading For Department
.REM
#s 2
#CUl hhkkkkhkhhkhhhhhhhhhhhkhkhkhkkhhkhkhkhhkddhkhkhhkkkhkhkhkhkhkhhkhhhkhhhhdk #
#b
#cen
DEPTNO:
.PRINT deptno
- - DEPTNAME:
.PRINT dname
#
#b
#CUl R N S R R 2R XXX X222 22222 222 2 R R 2 R R R 8BRS 22 #
$s 2
.REM Report Each Employee within the current Department

* Example 2 - Nexted Report Program Listing

Figure 4.2B - Part 2 of 5

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:

X}

.REM
. REM
.REM
.DEFINE

.REM
.REM
. REM
.REM
.DEFINE

.REM
.REPORT selemp empbody emphead empfoot

DEPARTMENT Report "Fnot"
deptfoot
.REM Compute Division summary information
.REM
.REM Compute "Average Monthly Salary"
.REM
.DIV divavg divsum empcnt
.REM
.REM Output: Maximum and Minimum Salary
.REM Average and Total Yearly Compensation
. REM
#np
gcul Division \ Totals:Ht
#s 1
#t 4

#r #nc #r #nc #r #nc #r #nc

MINIMUM #nc MAXIMUM #nc AVERAGE #nc TOTAL #nc

SALARY #nc SALARY #nc COMPENSATION #nc COMPENSATION #nc
——————— #nc ————=~—- $nc -----——---=- $nc ---—-———-—---- $nc
.PRINT divmin

$nc

.PRINT divmax

§nc

.PRINT divavg

#nc

.PRINT divsum

fte

s 2

4cul End \ Of\NReport #

$te

PP T SRS A R R TR T X T I R A A LA SR AR R AL R
EMPLOYEE "H e ad" Macro

emphead

#t 2

#s 1

EMPNO #nc #cen NAME # #nc MONTHLY #nc COMM #nc ANNUAL #nc
#nc #nc SALARY #nc #nc COMPENSATION #nc

————— #NC ——==—==—===———— §nc --————--- $§nc -------- §nc
———————————— $nc

.REM Set-up Right/Left Justification Switches

.REM Insert One Blank Line

#nc #nc #r #nc #r #nc #r #nc

* Example 2 - Nexted Report Program Listing

Figure 4.2B - Part 3 of 5

151:
2:
-J3:
154: ..
155: .REM
156: .REM
157: .REM
158: .DEFINE
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169: ..
170: .REM
171: .REM
172: .REM
173: .DEFINE
174:
175:
176:
177
8:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194: ..

.REM
.REM Execute 'Body' Macro to Process First Rcw
.empbody
EMPLOYTEE Report "Body"
empbody
.PRINT empno
#nc
.PRINT ename
#nc
.PRINT monsal
#nc
.PRINT comm
#nc
.PRINT annsal
#nc
EMPLOYESTE Report " Foot"
empfoot
.REM

.REM Compute Department Summary Information
.REM

.EXECUTE deptsum

#te

#t 3

#s 2

#cul Department Summary # #nc —--—--——-—-——--—- #nc
$#s 1

\ AVG =

.PRINT deptavg

\ MIN =

.PRINT deptmin

\ MAX =

.PRINT deptmax

#$nc #r

.PRINT deptsum

fte
.REM Execute macro to compute division totals
.compsum

195: .REM **

196: .REM
197: .REM
198: .REM
199: .DEFINE
200:

Compute Diwvision Totals

compsum

.ADD empcnt empcnt deptcnt

* Example 2 - Nexted Report Program Listing *

Figure 4.2B — Part 4 of 5

201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:

60

.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
$dt 1
#dt 2
#dt 3
#dt 4
#page
#spn
#sp 1
.REM
.REM
.REM
.REM
#t 1
#s 4
$cul
#s 2
#cul
.REM
.REM
.SET
.SET
. REM

. REPORT
.STOP

.ADD divsum divsum deptsum
.IF "sdeptmax <= &divmax" THEN complO
Maximum

. REM

Set

New

.EQUAL divmax deptmax

.&complO
.IF "sdeptmin >= &divmin" THEN comp20

.REM

S e t

N e w

.EQUAL divmin deptmin
.&comp20

10 75 #

Report

De £fine

M i

Main

RPF"

5 9 13 27 31 38 42 49 55 0 #

1 51 55

0 #

1 9 12 20 23 37 47 0 #

6 58
2 42 21

Divwvidi

by Depar

Ex e cute

Print

s ion

tment #

\

Report

Division

Title

Payroll

\

nimunm

Section

Commands

Report

Repor t #

Initialize Division Minimum and Maximum Values
Highest value for Minimum; Lowest value for Maxilimum

divmin 9
divmax O

* Example 2 - Nexted Report Program Listing

seldept

999.99

deptbody depthead deptfoot

Figure 4.2B - Part 5 of 5

.REPORT = —-———=———=—--
/ \
/ "seldept"
\
\ /
|
I
I
head body |
T e
| |
| "depthead" | "deptbody"
! I
e - e ————————
I
|
I
I
.REPORT =-=—==———=-—---
/ \
/ "selemp" \
\
\ /
|
|
|
head body |
I e
I I
| "emphead" | "empbody"
I I
e - e
« REPORT

5-61

e +
| I
| "deptfoot" |
|
o +
fomm e +
|
| "empfoot" |
I I
o +

I

Fmm +

| "compsum" |

____________ [

/ \ I

/ "deptsum" \--+
\ /
\ /

seldept deptbody depthead deptfoot

*Example 2 - Nested Report®

Figure 4.2C

62

An alternative approach would be to accumulate the values in
program variables as each row is processed, then compute the
summary data using the RPT mathematical functions. This
technique was used to generate the "Division Totals" shown on
the third page of the report (Figure 4.2A). However, instead
nf computing for each employee row, division totals were
computed using each department's summary data. This choice
was made to improve performance by reducing the frequency of
execution of the "compsum" macro. In most cases the
difference would not be significant, however to analyze the
maximum and minimum values of ‘'salary' two "IF" statements
are required. As utlined in section 4.4.4.3.1 "IF Statement
Guidelines", "IF" statements processing is fairly time
consuming and therefore the frequency of execution should be
minimized.

The procedural macro "depthead" was included only because a
"foot" macro was required for the outer report. Because the
procedural macros on the .REPORT statement (Line 241) are
positionally defined a 'head' macro name must precede the
'foot' name. The explicit execution of the body macro
"deptbody" causes the first row to be processed.

The body of the "Department Report" lists the department's
name and number, then executes the inner employee report
(Line 102). In the 'foot' of the department vreport the
average compensation is computed (Line 112). The headings
for the division totals are printed in Lines 121 to 124.
Line 121 does not output any text, but has the effect of
skipping a single line. The '#r' commands executed in each
column forces right justification.

The head macro of the "Employee Report" ("emphead") prints
the headings for this inner report and sets the justification
for the output columns (Line 150). Again, the body must be
executed to cause the first row to be processed. The 'body'
outputs each column of data retreived, and the 'foot!'
computes and lists the department summary information.

"compsum" uses the 'ADD' statement to accumulate the sum of
the compensation and the total number of employees. The "IF"
statements compare current department minimum and maximum
salaries with those values for the division. Since blanks
were included within the expressions they must be enclosed
within double quotation marks ("). If a new max ovr min
values is not established then the expressions are true and
control is passed to the macro label specified after the
"THEN" clause. Since no "“ELSE" statement was specified, a
false condition causes the next instruction to be executed.
The "EQUAL" statements cause the division values to be set
equal to the corresponding department values.

Line 211 is the end of the macro definitions and the
beginning of the Procedure section of this report program.
As defined on lines 220 through 223, four tables were
required for this report. Tables 2, 3, and 4 are invoked
within table 1 at various places in the report. The *$spn’
command (Line 225) causes the pages of the rvreport to be
numbered. Type 2 format (Letter Page Numbering) was selected
to be printed beginning in print position '42'. Two lines
will be skipped after printing the page number. Numbering
will begin with '1', however with type 2 the number is not

printed on page one.

The "SET" statements (Lines 238,239) initialize the values of
the division minimum and maximum salaries. The "REPORT"
statement executes the outer report which drives the entire

program.

4.4 Example 3 - Sample Letter

This example demonstrates the flexibility of the report
writer to construct a computer generated letter. Fixed text
is combined with database information to form the completed
memo. The power of SQL allows the desired data to be
obtained from the database, and the RPF commands and RPT
statements permits the data to be interleaved within the

letter format.

Figure 4.3A shows the sample which is composed of data from
the 'EMP' and 'DEPT' table. The report was executed to
generate multiple copies of this memo, each addressed to a
different manager. The manager's name was obtained from the
"EMP' table, and the manager's department number, name and
location from the 'DEPT' table.

The current 1981 and proposed 1982 salary figures arve
included within the body of the memo. This information 1is
obtained by computing the sum of the salaries of each
employee in the 'EMP' table who 1is 1in the addressee's
department. This information will be different for each
manager's copy of the memo. Although this memo is very
simple, it demonstrates the veport writer's ability to
combine and include data from various tables in the database
into a single letter.

Figure 4.3C provides a block diagram of the report program.
A single '.REPORT' statement with only a body macro was used.
The SELECT statement which drives the report generation joins
the 'EMP' table to the 'DEPT' table to retrieve the adressee
data. Within the body a second SELECT is explicitly executed
to compute the current and proposed salary data for the
addressee's department.

A program listing of the report is provided in Figure 4.3B.
The line numbers and titles were added after execution. In
the 'DECLARE' variables section, the variable 'curdate' has a
format of 'date'. This means that the value of curdate is in
the internal Julian day number format. If this variable was
assigned its value from a column in a SELECT list, that
column value must also be in Julian day format. Presently,
only IAF supports the creation of a column value in this
format. In this program 'curdate' is used to output the
current date at the time of execution. Assigning the
variable to the current date is accomplished by the .SET
statement on line 22. The literal 'S$$DATE$$' instructs RPT
to obtain the date from the system, convert it into Julian
format, and then store it into the variable referenced on the

SET statement.

The first of the two SELECT macros, 'seladdr', Jjoins the
'EMP' to the 'DEPT' table to acquire the addressee
information. The second predicate in the WHERE clause
restricts the list of addressees to department managers. The
'selsum' macro uses the SQL arithmetic capabilities to
compute both the current sum and the sum incremented by 10%
for employees in the manager's department (Line 44).

5-65

Date : 03/25/81

To: BLAKE
Department : 30 - SALES
Location : PARIS

From : Bill James
Director of Personnel

Subj : 1982 Employee Compensation Plan

Its budget time again! To aid you in completing the salary
portion of your budget I have computed your department's
current salary expenses. For planning purposes we are
presently estimating an across the board increase of 10% in

the 1982 salary pool.

Your department's 1981 figure is: $140,430.00

Estimated 1982 figure is: $154,473.00

In completing your salary plan you should break this total
down by individual employees. Please let me know if you have
any questions on this or related issues.

Bill

Example 3 - Sample Letter

Figure 4.3A

101:
02:
103
04 :
105:
106 :
107 2
108
109:
110:
111:
112
113:
114:
115:
116
117:
118:
119:
120 ¢
121:
122
123:
124 :
)25:
126:
)27 :
128:
)29:
130:
)31:
132:
)33:
)34:
135:
)36:
137
)38:
)39:
)40:
)41:
)42
143
)44 :
)45:
)46
)47 :
)48:
)49:
)50:

5-66

.REM
.REM
.REM
.REM
.REM
.REM
.REM
.REM
. REM
.REM
. REM
.REM
. REM
.REM

khkhkhkhkkk*

GENERATED LETTER khkkkkkkhkk

SAMPLE REPORT 3
kkkkkhkhkhkhkkkkhk.

This sample demonstrates the capability to create a computer
generated letter or memorandum.
combined with the predefined text to form the completed letter.
A REPORT statement is used to drive the generation of multiple
letters, each with a different addressee and variable data.

Information from the database is

D E C L A R E V A R I A B L E S

.DATABASE personnel
addressee all

.DECLARE
.DECLARE
.DECLARE
.DECLARE
.DECLARE
. REM

deptno

999

dname alb
location als
curdate date

Set the variable 'curdate' equal to today's date

.SET curdate $$DATESS

.DECLARE

.DECLARE sumsal+ $999,999.99

.REM
.REM
.REM
.REM
.REM
.REM
. REM
.REM
.DEFINE

.REM
.REM
.REM
.DEFINE

. REM
.REM

sumsal

seladd
SELECT
INTO
FROM
WHERE
AND

selsum

$999,999.99

S Y 22222 X222 22 2 R R R R A &L LS

De £fine SELECT Macros

**

Select and their Departments

Managers
r
emp.ename,dept.deptno,dept.dname,dept.loc
addressee,deptno,dname,location

emp,dept

emp .deptno=dept.deptno

job = "MANAGER'

Select Department's Current Payroll

SELECT sum(sal*12),sum((sal*1l.1)*12)

INTO
FROM
WHERE

*kkkkkk

* Example 3 — Sample Letter Program Listing

sumsal,sumsal+
emp
deptno

&deptno

**

Figure 4.3B - Part 1 of 2

**

¥

%

**

051:
0Ff

oL.

054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077.
0’

07y:
080:
081:
082:
083:
084:
085:
086:
087:
)88:
089:
J90:
J91:
)92:
J93:
)94:
)95:
)J96:
J97:
)o98:
)99:
LOO:

.REM
. REM
.REM
.DEFINE

De fine Procedural Macros

AhhhhhhkhkhkhkhkhhkhhkhhkhkhAhhkhhhhhhhhhhhhkhkhhhhhhkhhkhdhhhhrdrhhrhbddhhkhkhk

memobody
#np
Date :
.PRINT curdate
#s 2
To:
.PRINT addressee
#b Department
.PRINT deptno
.PRINT dname
#b Location
.PRINT location
#s 2 From Bill James #p \ \ Director of Personnel
#s 2 Subj 1982 Employee Compensation Plan
#s 2
I1ts budget time again! To aid you in completing the salary portion
of your budget I have computed your department's current salary
expenses. For planning purposes we are presently estimating an
acrnss the board increase of 10% in the 1982 salary pool.
#s 2
.REM
. REM S ELECT Department's Salary Total
.REM
.EXECUTE selsum
#i 10 Your department's 1981 figure is:
.PRINT sumsal
#b Estimated 1982 figure is:
.PRINT sumsal+
#s 3
#te
In completing your salary plan you should break this total down by
individual employees. Please let me know if you have any questions
on this or related issues.
#s 3
Bill

. REM khhkhhkhhkhkhkhkhkkhkhkhkhkhkhhkhkhkhhkhhhhhhkhhhhhhhkhhrhkhhhkhhkdhkhhkhhhkhhkhkhhkhdhrhhkhhkhhhid

.REM
. REM
.REM

PROCEDURE SECTTION

.REM **kkkkkkhkhhhkhkhkhhhhhhhhkkhhhkkhhhhhkhhhhhkkhhhhkhhhhhhhhhhhrhhrhhhkhhhhddhd
#dt 1 13 73 #

#t 1
#page 8
- REPORT
.STOP

56
seladdr memobody

“Example 3 - Sample Letter Program Listing”

Figure 4.3B - Part 2 of 2

.REPORT —=—————————=-
/ \
/ "seladdr" \
\ /
\ /
|
|
[

body I
o +
I I
l "memnbody" |
I
Fmm +

|
I
|
|
/ \
/ "selsum" \
\ /
\ /

*Example 3 - Sample Letter

Figure 4.3C

5-69

The .REPORT statement on line 99 drives the generation of
these multiple memos. only a body macro “"memobody" is
specified. Since no head macro was included, the body will
be executed for the first row returned. The structure of the
body is similar to the RPF examples presented in Section 3.
Interspersed within the text are PRINT statements which cause
the appropriate database information to be included within
the memo output. The EXECUTE statement on line 78 executes
the 'selsum' to compute the salary sums. The '#p' command
and double back slash '\' on line 67 are used to force the
author's title to be alligned under his name. Each '\'
causes one additinnal blank to be included. The '#np' on
line 55 causes each copy of the memo to be printed on a
separate page.

REPORT - WRITER - UTILITY

(RPT)

5.1 Overview

The ORACLE Report Writer Utility (RPT) interprets and
executes a report generation program. A Report Program may
consist nf report writer statements, RPF commands, and user
text. The use of RPF to format text is described in an
earlier section, and a working knowledge will be assumed.

This section will concentrate on the statements necessary to
construct a report program. The structure of a program will
be described along with a detailed discussion of each
programming statement.

5.2 Report Generation Process

Figure 5.1 is an overview of the report generation process.
The report program is created using a standard text editor.
This file is passed as input to the RPT utility.

The program file may contain report text and RPF commands in
addition to the RPT program statements. The text and RPF
commands are ignored by RPT and are copied as encountered
directly to the "Interim File". On the other hand, Report
Program statements are interpreted and executed. The main
purpose of the report program is to direct the retrieval of
database information, and properly place that data into the
"Interim File". Each data item which RPT places into the
output file is treated by RPF as a "word". This "Interim
File" must subsequently be processed by the RPF utility.

—— — ——— - ——— — ——— - —— o — — -

|Report Writer Statements|
| + l
| User Text |
| + I
| Format (RPF) Command |

——— ——— ————— — — T ————— - — e ==

REPORT

WRITER

INTERIM TEXT | Database + User Text |
FILE | And |
| Format (RPF) Commands |

TEXT

+|
+1 |
| AAAAAAAL | |
leeeeoaalld
| XXXXXXX |+

I
|
|
+

output report

5-71

I v¢user>" |
Database |

ORACLE DATABASES

* Report Generation Process "

Figure 5.1

In this manner database information is merged with text to
form the finished report. Text can be included for report
titles, column headings, descriptive information, or the bondy
nf a letter for computer generated correspondence. RPF
commands can be used to control text and data placement into
a tabular format, spacing, underlining, margin control, and
page numbering. Any valid RPF command is permitted in a
report program.

5.2.1 Executing RPT

The RPT utility may be executed from the user's terminal or
scheduled within a batch procedure. The utility is executed
with the following command:

RPT <input file> <output file> [userid/password] [-c]

<input Is the name of the file which
file> contains the RPT report program.
<output Name to be assigned to the "Interim
file> File" created by RPT and subsequently
processed by RPF.
userid / This parameter is required only if
password the ORACLE database to be processed

is secure.The 'userid' must have been
defined using the SQL Define User
Statement, and have been granted

‘read' privileges to the desired
data.
-CN Where N specifies the size of the SQL

work area to be requested for each
SQL query defined in the report. If
omitted, a default value of 3K bytes
will be used.

5.3 Report Structure

The RPT programming language is similar in many ways to
conventional languages like COBOL or PL/I. Although no
explicit declaration of program sections is required (ie.
COBOL Data Definition Section) a 1logical grouping of
statements is helpful in providing clarity. The three
sectinns of a RPT program are:

- Data Declaration Section
- Macro Definition Section
- Procedure Section

The Data Declaration Section contains the definition of the
user's ORACLE database, and "local" variables to temporarily
store retrieved database information. Variables may also be
defined for counters, to store totals, and as temporary
storage.

Two types of "macros" may be defined within a Macro
Definition Section. The "SELECT" macro is used to define a
SQL select statement. A "Procedural® macro is similar to a
COBOL program subroutine, and is a collection of executable
RPT statements.

The Procedure Section contains executable RPT statements
which comprise the main body of a report program. Within
this section "SELECT" and "Procedural"” macros can be either
explicitly or implicitly executed.

Again, these are purely logical sections; no language
statements exist to define the beginning of one or the end of
another. There are virtually no restrictions on where RPT
statements may be used within a program. Variables however,
must be defined before they are used. RPF commands and
report text may be included anywhere within a program, and
will be copied into the "Interim File" as encountered within
the program's execution.

5.4 RPT Language Statements

This sectinn will describe each RPT statement. Figure 5.2 is
a summary of these statements.

The general form of a report statement is:

.<command> <argl> <arg2> ... <argn>

Report statements begin with a period (".") immediately
fnllowed by the RPT command. <command> must be one of the
commands listed in Figure 5.2. Although commands and

reserved words will be specified in upper case, either upper
nr lower case is permitted.

A RPT command may begin anywhere on the input line. Each
command occupies the entire line; report text or other
commands may not be included. All the arguments associated
with a command must be specified on the same line.

A command may have one or more arguments. Arguments are
specified positionally in the defined order. Each argument
must be separated by at least one blank space. Arguments are
specified by replacing <argl> <arg2> ... <argn> with either a
numeric or alphabetic character string.

Some arguments may contain blank spaces. If one or more
imbedded blanks are included the entire argument must be
enclosed in double quotes. For example

.ASK "Please enter request date : " date

contains two arguments; the message "Please enter request
date : " and the variable 'date'. The double quotes serve to
delimit the beginning and end of an argument, and are not
considered a part of the string. Arguments which may contain
blanks are dennted with optional quotes (["l1<arg>("]).

Arguments enclosed within square brackets "[]1" are optinnal;
those enclosed within vertical bars "| |" indicates a choice
of one.

.DATABASE <database name>

.DECLARE <program variable name> <format>

|
|
|
|
|
.SET <program variable name> <literal value> |
|
.EQUAL <destination variable)> <source variable> |

l

+==+
R L T T T T T T e e o
| MACRDO DEFINTITTION STATEMENT |
=== smsm=ss=s—msm—s=—ocoTCoCoCSSSSSSSSSSSSSSSSSSZS=S=SSSS=sSs======s=4

.DEFINE |<SELECT Macro Name> |
| <Procedural Macro Name>|

| |
l |
| |
[|
| Macro Text Lines |
| |
I |
| I
| |

+==================“.==+
t============c====ss==sSs=s=SsS==SCSSSSSSSSs=S=SSSSSS=SSSSsE===s=ss=s=4
| MACRDO EXECUTTION STATEMENTS I
+===========co====Ss=s=oSsSSESNSSCSSSsSsSsSEESSSSSS=SSE=s========4

.<Procedural Macro Name>

« REPORT <SELECT Macros > <Body Macro>

|

|

|

.EXECUTE <SELECT Macro Name> |
|

|

[<Head Macro> [<Foot Macro>]] |

|

RPT Statements - Figure 5.2 (Part 1 of 2)

5-75

5-76

+==+
| PROGRAM CONTROL STATEMENTS |
+===:::::+
I I
I .&<Label Name> |
| |
| .GOTO <Label Name> I
I |
I .IF ["]<Expression>["] THEN <Labell> [ELSE <Label2>] |
I I
| .STOP |
I |
+===:==+
+==+
I ARITHMETTIC STATEMENTS |
+==+
| |
! |ADD | |
| .|SUB | <Dest Var> |<Source Var 1>||<Source Var 2> |
| IMUL | | <Literal> |1 <Literal> | |
[IDIV | I
| | DSUB] |
I I
+==+
+==+
| MISCELLANEOUS STATEMENTS I
+==+
I I
I .PRINT <Program Variable Name> I
I |
| .ASK '<Message>' <Program Variable Name> |
I |
| .REM <Comment Text> |
| |
+=====================:====================================+

RPT Statements - Figure 5.2 (Part 2 of 2)

5.4.1 Declarative Statements

5.4.1.1 DATABASE

This statement specifies the ORACLE database to be processed
within this report. Only one database may be processed per

report program.
.DATABASE <database name>

<database is the name of any valid database.
name> 1f the database is secure a
userid/password must be supplied at
RPT execution time as part of the RPT

command line.

5.4.1.2 DECLARE

This statement is used to declare a program variable and the
edit format for printing. All ©program variables are
initialized to null and must be referenced in other
statements.

.DECLARE <var name> <format>

<var name)> Is the name assigned to this program
variable. The name may be from 1 to
X characters, with the first

character alphabetic.

<format> is the edit format used when
outputting this wvariable to the
"Interim File". The format will also
control rounding and overflow when
used 1in arithmetic statements. A
variable's data type is indicated by
its format specification. Three data
type are currently supported;
alpha-numeric, numeric, and date.

Date

A 'Date' variable 1is defined by specifying a format of
'DATE'.

The output format of a 'date' type variable is MM/DD/YY.
Internally, a 'date' variable is a numeric variable which
contains the associated date in an absolute julian day
number. This approach allows one date to be subtracted from
another using a standard arithmetic subtraction function (see
sectinn 5.4.5.5 - DSUB). For example:

01/20/81 - 12/29/80 = 22

provides the numeric result of 22. Numeric values may also
be added to or subtracted from a date. This is useful in
printing invoices where the due date may be computed to be
the current date plus 30 days.

A 'date' variable may have its value initialized in a number
of ways. It may be assigned a literal value of the form
MM/DD/YY, or may be set equal to the value of another 'date’
variable. If its value is assigned as a result of a column
returned in a SQL SELECT, the database value must be in
internal 'Julian Day' format. presently, the only method for
storing internal date data items within a database is by
entering the data using an IAF application.

To create a 'date' compatible column, the column must be
defined as a 'number' in the SQL CREATE TABLE statement. The
column's value must be initially entered and always updated
using an IAF application, where the field type is defined as
‘date’'.

Alpha-numeric

An 'Alpha-numeric' wvariable may contain any printable
character, and is defined by specifying a format of 'An' (
where n = number of characters). When a report is executed
all alpha-numeric variables are assigned the 'NULL' value.

Numeric

'"Numeric'
symbols:

variables are specified wusing the following

9 - defines each digit of a numeric variable.
Leading zeros are not displayed.

. - Defines the position of the decimal point within
a numeric wvariable. The position 1is wused for
arithmetic alignment and is displayed on output.

, - Causes a comma to be inserted on output.
Omitted on output if there are no digits to the left
of this position.

$ - causes a dollar sign to precede the number on
output.
MI - Causes the minus sign to be displayed to the

right of a negative number. The default is to the
left.

PR - Causes the variable to be displayed within "<
>" brackets when negative.

0 - May be used instead of a 9 to designate a digit.
Normally leading zeroes are suppressed, however a
zern in the format will cause every digit position
to be filled.

V - Defines the position of the decimal point within
a numeric variable. The position is wused for
alignment in arithmetic statement, but the decimal
point is not displayed on output.

B - Causes the variable to be output as blanks if
its value is zero.

The following are examples of various formats:

Format
999.99
999v99
9,999
9,999
99999
09999
9999
9999MI
9999PR
B999
B999
99.99

$99.99
DATE
A5

A20

(1) - If the value

Value Displayed
56.478 56.48
56.478 5648
8410 8,410
639 639
607 607
607 00607
-5609 -5609
-5609 5609-
~-5609 <5609>
564 564
0 blanks
124.98 (1) $4.44
24.98
45.23 $45.23
2441453 (2) 12/23/80
Customer Custo
Customer Customer

retrieved into this variable from the

database is greater than can be displayed by the format, #'s

will be displayed.

If the variable is overflowed due to an

arithmetic operation, a truncated value will be displayed.

(2) - Julian day number for 12/23/80

5.4.1.3 SET

This statement sets the value of the variable equal to the

specified literal value.

.SET <variable name> <literal value>

<variable
name>

<literal
value>

any previously defined program
variable.

numeric or character 1literal. The
literal type must match the variable
type. The special literal "$SDATESS"
may be used to assign the system date
to a date variable.

.SET name JONES - sets the current value of the variable
'name' equal to JONES.

.SET empno 5647 - sets the current value of the numeric
variable ‘empno' equal to 5647.

.SET today $$DATESS - sets the value of the date variable
'today' equal to the current date.

5.4.1.4 EQUAL

This statement will set the value of one variable equal to
the value of another variable. Both variables must be of the

same data type.
.EQUAL <dest var> <source var>

The <dest var> will be set equal to the value of the <source
var>.

For character variables, the value of the <source var> will
be truncated if longer than the <dest var>, and blank filled

if shorter.

For numeric variables, if the format of the <dest var>
contains fewer decimal places, the value of the <source var>
will be rounded. No provisions are made for overflow.

If the value of the <source var)> cannot be stored within the
format of the <dest var> variable, the wvalue will be
truncated in the destination.

5.4.2 Macro Definition Statements

RPT recognizes two types of macro statements; SELECT and
Procedural. Both types are defined in the same manner, and
RPT will distinguish them by the way they are invoked and the
type of statements they contain.

5.4.2.1 DEFINE

This statement is used to define a SELECT or Procedural
Macrn. Execution of this statement stores the macro away for
future use. Nothing is output to the interim file. Notice
that ".." (two periods) on a line by themselves are used to

complete the macro definition.

.DEFINE |<SELECT Macro Name> |
| <Procedural Macro Name> |

Macrno Text Lines

<SELECT Macro Name> Name of the macro being
<Procedural Macro Name> defined.

Ends the Macro definition.

5.4.2.2 SELECT Macro

A SELECT Macro contains the text of a SQL query. Only one
query may be specified within each SELECT macro. These
queries are used to retrieve the data which will be included
within the report. The macro may include any SQL clause or
parameter which is valid within a SELECT statement. In this
manner the full power of the SQL query language may be used
to extract the database information.

In addition to the standard SQL clauses, an INTO clause must
also be included. This clause specifies the program
variables which will receive the column values returned in
the SELECT clause. For example a report program has three
variables defined; alpha, beta, and gamma. I1f the following
SELECT macro named 'sample' were executed:

.DEFINE sample
SELECT empno,ename,loc
INTO alpha,beta,gamma
FROM emp,dept
WHERE emp.deptnn=dept.deptno
and sal > 5000;

the values returned for 'empno', 'ename', 'loc' are stored in
the program variables ‘alpha','beta’','gamma’ respectively.
The program variable must be of the same data type as the
column or expression in the SELECT clause. 1t should be
noted that an INTO clause, as well as any SQL clause, may be
defined in a 'free format', and the structure used here is

for readability purposes only.

The value of a program variable may be substituted for any
literal defined in the WHERE or SELECT clause of a SQL query.
when used in this manner, the variable name must be preceded
with an '&'. The variable name may not include an underscore
character '_'. For example, if the following SELECT macro:

.DEFINE seldept
SELECT deptname,location
INTO dname,loc
FROM dept
WHERE deptno = &dno

were executed with 'dno' equal to 20, the value of 20 would
be substituted into the WHERE clause, and the ‘name' and
"location' of department 20 would be stored into the program
variables 'dname' and 'loc'. Both the program variable and
the database column must be the same date type.

83

From the above examples, it can be seen that the results of
one query may be stored into a program variable, and used as
a substitution variable within another query. This technique
is used to construct queries which produce nested reports.
Nested reports are discussed in Section 5.4.3.3.1. The
fnllowing two SELECT statements would be used to generate a
report of each course in the ' PHYSICS' department, and for
each course a list of students and their grades:

.DEFINE courses
SELECT cname,cnumber ,cdate

INTO cname ,cnumber ,cdate
FROM course
WHERE cdept = 'PHYSICS'

.DEFINE students
SELECT sname,grade
INTO sname ,grade
FROM students
WHERE course = &chumber

5.4.2.3 Procedural Macro

A 'Procedural Macro' is similar to a programming language
subroutine. It may contain both RPT language statements, and
user text and RPF commands. When invoked, the RPT statements
within the macro are executed, and user text and RPF commands

cnopied to the 'Interim File'.

A macro may not be defined within a macro. Macros may be
invoked from within other macros. The fnllowing procedural
macro outputs the heading of a report. The .PRINT statement
outputs the value of the variable 'year', and is explained in
a later section.

.DEFINE heading
#t 2
#cul Corporate Finance Report #
#s 2
#cul Fiscal Year
.PRINT VYyear
#

5.4.3 Macro Execution Statements
5.4.3.1 Procedural Macro Execution

A procedural macro may be explicitly executed anywhere within
an RPT program including from within another procedural

macro. The named macro is executed by specifying:
.{procedural macro name>

The macro must have been defined in the program prior to its
execution. The statement:

.summary

will cause the procedural macro named 'summary' to be
executed. Following the macro execution the next sequential

statement is executed.

5.4.3.2 SELECT Macro Execution

A SELECT macro may be explicitly executed with the following
RPT statement:

.EXECUTE <SELECT macro name>

The EXECUTE statement will cause the specified SELECT macro

to be executed. Following the execution of the query, the
first row will be returned. The values of the selected

columns will be placed into the corresponding program
variables as defined on the INTO clause.

Executing a query in this manner will always return only the
first row. If the macro is re-executed, the entire query
will be reprocessed, and again the first row is returned.

Explicit execution of SELECT macros is useful where only one
row is returned. For example, if the average sal for a
department was to be reported in a summary sectinn, the
following query could be executed to return this result:

.DEFINE deptavg
SELECT avg(sal)
FROM dept
INTO avgsal
WHERE deptno = &dno;

.SET dno 30
.EXECUTE deptavg
.PRINT avgsal

Another use of the EXECUTE would be to look up a customer's
name and address, based on the customer number, for a
computer generated form letter. The following example would
accomplish that task:

.DEFINE custaddr
SELECT custname,custaddr
INTO name ,addr
FROM custlist
WHERE custno = &customer

.EXECUTE custaddr
.PRINT name

#n

.PRINT addr

#n

5.4.3.3. REPORT Statement

The REPORT statement causes the automatic execution of SELECT
and procedural macros which drives the generation of most
reports. Unlike the EXECUTE statement, the REPORT statement
will cause every row returned from the SELECT to be
processed. For each row the specified procedural macros are
executed. Figure 5.3 depicts the structure of a REPORT

statement.

The three procedural macros correspond with the head, body,
and foot of a report. The head macro is executed once within
a REPORT statement, when the first row is returned. Included
within this macro would be the column headings, descriptive
text, and report titles. Since the body macro is not
executed for the first row returned (if the heading argument
is included) ynu should either execute the body macro as part
of the heading or make other arrangements to print the first
row. This allows flexibility in setting up reports since it
may be desirable to handle the first row differently than
succeeding rows.

The body macro is executed for the second through the last
rows. If a foot macro was not specified, the body would also
be executed for the first row. Its function is to output
each row of data within the desired format. Other functions
could be to accumulate totals, maintain counters, and control
page breaks.

The foot macro is executed after the last row of the query
has been processed. Within this macro summary calculations
and footnotes could be included.

The head, body, and foot are standard procedural macros and
may contain any valid RPT statement. Within these macros,
nther macros can be executed. For example, within the foot
of a report the following SELECT could be executed to compute
salary statistics for the department 10:

.DEFINE summary
SELECT max(sal),min(sal) ,avg(sal) ,sum(sal)
INTO maxsal ,minsal,avgsal,sumsal
FROM emp
WHERE deptno=10

5-88

———————————— e — 4

/ SQL QUERY \ I I

/ \ | BODY |

\ (SELECT) / [|

\ / I I

———————————— e ==}
<{select macro> <body macro>

T ettt +

| I

I I

| FOOT |

I I

ettt Ty +

<foot macron>

.REPORT <select macro> <body macro> [<head macro> <foot macro>]

REPORT Statement Structure

Figure 5.3

5-89

5.4.3.3.1 Nested Reports

A REPORT statement can be executed within the head, body, or
foot macros of another REPORT. Figure 5.4 shows the
structure of such a report.

In this example, the departments within a company are
reported. For each department, a list of the projects within
that department 1is generated. Within the body of the
'department' report, is a REPORT statement to generate the
projects report.

Multiple levels of nested REPORT statements may be
constructed. Additionally, multiple REPORT statements may be
included within a head, body, or foot of another report.
Figure 5.5 shows the structure and format of an ‘'employee
personnel' report, listing for each employee, the employee's
job history, salary history, and project assignments.

5.4.3.3.2 Disjunctive Reports

Two or more SELECT macros may be specified in a REPORT
statement. In this case multiple SELECT's will be executed,
and a row from each returned. The head, body, and foot
macros would be executed exactly as with a single SELECT,
however data from multiple selects may now be printed. The
rows from each SELECT are returned in step with each other.

The data retrieved from multiple selects may be entirely
independent, referencing different tables. For example, an
employee's job history may be retrieved by one SELECT, while
a list of the employee's current projects by another. This
data could be printed side by side in separate columns across
the page as shown in figure 5.6.

The multiple SELECT macros may be specified with either an
'"AND' or an 'OR' between each select macro. 'AND!' indicates
that the report should be executed only if both selects (on
either side of the 'AND') return at least one row. An 'OR'
indicates that the report should be executed if at least one
of the selects (on either side of the 'OR') returns at least
one row. Note that if only one SELECT is specified in a
report and n® rows are returned, the report will not be
executed. Also note that if two or more selects are
specified the select argument will need to be enclosed in
quotes as in "sell AND sel2".

5-90

.REPORT = —=——=————=—=--—
/ \
/ "seldept” \
\ /
\ /
|
body I
o +
["deptbody" |
I I
o +
I
I
.REPORT = ———==—======
/ \
/ uselproju \
\ /
\ /
I
head body | foot
fom + Fomm e + fommm e
| "projhead" I | "projbody" | | "projfoot”
I I I | |
Fom e + pommm e m— e + pomm e

DEPARTMENT / PROJECT REPORT

Department Department Department
Number Name Location
067 Circuit Dev Boise
Project No. Project Name Comp Date
563 Board Design 04/30/81
894 Chip Manufact 06/01/81

NESTED REPORT

Figure 5.4

.REPORT --——-==—=—--<
/ \
/ "selemp" \
\ /
\ /
I
body |
o +
| "empbody" |
I I
o +
|
I
——————————— .REPORT ——-———=————— .REPORT —-—=—=—=—==-
\ / \ /
"seljob" \ / "gselsal" \ / "selprOJ"
/ \ / \
/ \ / \
| I |
[body | body |
————————————— + o ettt
"jobbody" I | "salbody" | | "projbody"
| I I I
————————————— + o=+ o
EMPLOYEE PERSONNEL REPORT
Employee Number Employee Name
8945 Martin, R.J.
Job Title Start Date
Prog Trainee 06/14/72
Programmer 12/06/75
Analyst 05/23/77
Salary Start Date
$9,600.00 06/14/72
$13,200.00 02/01/74

Project Assignments

456 Sales Report System

MULTIPLE REPORTS WITHIN A REPORT

Figure 5.5

5-91

5-92

.REPORT = —=——====————-
/ \
/ "selemp" \
\ /
\ /
|
body |
T +
l " empbodyn " |
I |
o +
|
|
.REPORT = -——-—-——=—====—
/ "seljob" \
“ORll ____________ \
/ \ /
/ "selproj" \ /
\ /-
\ /
I
head body | foot
Fomm e + o + o — -
I "head" | | "body" | | "foot"
I I I I I
B e B + o ——— - + e
EMPLOYEE REPORT
Employee Number Employee Name Job History
--- Current
4028 Murphy, P.E. Title Date Projects

®" DISJUNCTIVE

Figure 5

—— ———————— - ———— ——— - — ————

Pgmr Lv1ll 06/72 Design 33
Pgmr Lv12 12/74 Doc 45
Analyst 07/75

Sr. Anal 08/78

REPORT "

-6

5.4.3.3.4 REPORT Statement Format

The format of the REPORT statement is:

.REPORT <SELECT macros> <body macro> [<head macro> <foot macrol>]

<SELECT name of SELECT macro executed for

macros> this report. If two are specified,
they must be joined by an 'AND' or
'OR" and enclosed within double
qguotes.

<bondy name of the body macro which will be

macro> executed for the 2nd thru last

returned rows.

<head name of the head macro which is
macrod executed for the first row returned.
This parameter is optional.

<fnot name of the foot macro which is
macro> executed after the last row is
returned. This is an optional

parameter and can only be specified
if a head macro is also specified.

5.4.4 Program Control Statements

RPT provides statements to control the program execution
within a procedural macro. Only the .STOP statement may be
used outside of a procedural macro.

5.4.4.1 Label Definition Statement

A label may be defined within a procedural macro using the
following statement:

.&<label name>

<label From 1 to 8 character name; first
name> character must be alphabetic.

A label may be referenced only within the macro in which it
was defined. Label definitions do not span macros. Since
label definitions are local, the same label name may be used
in multiple macros.

5.4.4.2 GOTO Statement

The GOTO statement causes an unconditional branch to the
specified label. The format of this statement is:

.GOTO <label name>

<label ’ The name of a label defined within
name> the current procedural macro.

Figure 5.7 lists a sample program which demonstrates the use
nof the GOTO statement. '

5.4.4.3 1IF Statement

This statement causes a branch to the specified macro label
depending on the result of an expression. The IF statement
is only valid within a procedural macro. The format is:

IF <expression> THEN <labell> [ELSE <label2>]

<expressiond>

An <expression> may compare the wvalue of a program
variable with other program variables or literal
constants. Program variable names must be preceded with
an ampersand '&'. If the '&' is omitted an "Invalid

Column Name" message will be displayed.

The IF statement supports the complete set of relational
and logical operators, and arithmetic expressions
permitted within a WHERE clause of a SQL statement.

Character constants must be enclosed within single
quotation marks. All literal values and program
variables within an expression must be of the same data

type.

.REM
.REM
.REM
. REM
.REM
.REM

5-95

khkkkhkkkkkk

EXAMPLE OF "GOTO" STATEMENT

kkkkkkkkk

.DEFINE macrol

o o

«REM
.REM
.REM
.macrol

.GOTO labell
.&label?2

two
.GOTO end
.&labell

nne
.GOTO label2
.&end

Define Macro

Execute Macro

Generated Output

one two

*Sample GOTO Program"

Figure 5.7

If the 1literals, program variables, and relational

operators are ceparated by one or more blank characters,
the entire expression must be enclosed within double

quotation marks(").

A program variable used in an expression may not have the
NULL value. If the value is NULL, the report program
will be terminated with an error. To prevent this
situation all variables should be initialized to either

Zzerns or blanks.

If the variable is assigned a value from a database
column which allows NULLs, the null value function (NVL)

should be used to assign a non-NULL value. For example
the variable salary used in following IF statement:

.IF " &salary > 10000 " THEN ...

then the SELECT macro should define the NVL function in
the SELECT list:

SELECT NVL(sal,0)

INTO salary
FROM ...

If any variable participating in the expression has the
null value the ORACLE error: "unexpected end of sequel

statement” will be displayed.

The following are valid expressions:
&name="'SMITH'

&salary*2<4500

"sdept=10 or &div='MOTOR'"

" gsal > 5000 and &job = 'plumber'

<labell>

If the <expression> evaluates to 'True', processing
control will be transferred to <labell>

<label2>

If the <expression> evaluates to 'False', processing
control will be transferred to <label2>. If "ELSE
<label2>" is omitted, and the expression is 'False', the
next sequential statement is executed.

.REM
.REM
.REM

khkhkkhkkhkkkd

.DATABASE IAFDEMO

.REM
.REM
.REM

.DECLARE Xx 999

.REM
.REM
.REM

.DEFINE macrnl

.REM
. REM
.REM
.macrol

.&labell

Loop Counter =
.PRINT x

.ADD x x 1
LIF "&x <= 5 "
End of Lonop

Define Lo

Define

THEN labell

Execute

THEN"

op Variable

Macro

Macro

STATEMENT

5-97

**

EXAMPLE OF "IF
Ak A ARR AR KA RARRIAR ARk R Rk kAR A Rk hhhhhkhhhhhhhhhhhkhhhkhkhdhhhdd

* Kk kkkkk

Generated Output

Loop
Loop
Loop
Loop
Loop
End o

* Sample IF THEN Program

Figure 5.8

Counter
Counter
Counter
Counter
Counter
f Loop

Ut W N

5.4.4.3.1 1IF Statement Guidelines

IF statement processing is fairly time consuming, and should
therefore be used cautiously within a report program. It can
be used effectively for controlling the overall flow of a
report, where the statement will be executed infrequently.
For example, depending on the current date or a terminal
input variable, certain sections of a report may be included
or excluded. The IF statement(s) contrnlling these
conditinnally executed sections would be executed once for
the entire report.

In contrast, executing an IF statement for each row
processed, could severely lengthen the report execution time
if a large number of rows were processed. For example,
although RPF supports page control, there is n»o mechanism to
reprint page headings for each page break. One method of
reprinting the headings would be to count each line which is
generated, then at the top of page execute a special heading
routine. However, for each line printed an IF statement
would have to be executed to test for an end of page
condition. This use of the IF statement is not recommended

for reports of substantial length.

Some uses of the IF statement can be replaced with SQL
functions. For example computing the maximum and minimum
value of a variable over a range of rows could be
accomplished by comparing each new value with the previous
maximum and minimum values. This requires two IF statements
for each row. Another approach would be to execute a SELECT
in the report 'foot' which used the MIN and MAX SQL
functions. The second approach would be more efficient.

5.4.4.4 STOP Statement

The STOP statement will terminate the execution of the report
program. STOP may be included in the procedure section or a
procedural macro. The format of the statement is:

.STOP

If a STOP is not included, the program will terminate
following the execution of the last program statement.

5.4.5 Arithmetic Statements

RPT provides statements to perform addition, subtraction,
multiplication, and division between two program variables.
The results of the onperation are stored in a third variable.
The formats are:

| ADD |
.1SuB | <dest var> <source varl> <source var2>
|MUL |
|
[

|DIV

<dest var>
{snurce varl>
<source var2>

For all arithmetic statements except DSUB, a numeric
literal may be substituted for the input arguments
{snurce varl> and <source var2>.

These numeric variables must have been previously
defined. The maximum number which can be stored in
a variable is determined by the format specified on
the DECLARE statement. If the result of the
arithmetic operation overflows the <dest var>, the
high order digits will be lost, and no error will be
indicated. These digits are lost both on output and
in subsequent arithmetic operations.

For example, if the result is '456' and the format
of <dest var> is '99', '56' is stored in <dest var>
and the high order digit '4' is lost.

If the decimal portion of the arithmetic result
contains more digits them defined in the <dest var>
format, the low order digits will be rounded off.
For example, if the the result was '46.576' and the
format of the <dest wvar> was '99.99', the number
146.58' will be stored.

5-100

5.4.5.1 ADD

The value of <source varl> is added to <source var2> and the
result is stored in <dest var>. For example, if X=5 and Y=6
then:

.ADD Z X Y

will set Z=11. The result may be stored into one nf the
source variables with:

.ADD X X Y

results in X=11.

5.4.5.2 SUB

The value of <source var2> is subtracted from <source varl>
and the result is stored in <dest var>. For example, if X=5
and Y=3 then:

.SUB Z X Y
will set Z=2. The statement:
.SUB X X Y

set the value of X=2.

5.4.5.3 MUL

The value of <source varl> is multiplied by <source var2> and
the result is stored into <dest var>. For example, if X=5
and Y=6 then: .

LMUL Z X Y
will set Z=30. The statement:
.MUL X X Y

sets the value nof X=30.

5-101

5.4.5.4 DIV

The value of <source varl> is divided by <source var2> and
the result is stored into <dest var>. For example, if X=10
and Y=2 then

DIV Z X Y
sets the value of Z=5. The statement:

DIV X X Y
sets the value of X=5. If a number is divided by zero (ie.
¢source var2>=0), a "** DIVIDE BY ZERO (X/Y) **" error

message will be 1issued and the report program will be
terminated.

5-102

5.4.5.5 DSUB

This statement subtracts one 'date' variable from another,
storing the result into a ‘numeric' variable. This allows
the number of days between two dates to be computed. For
example, if DATE1=01/24/81 and DATE2=12/25/80 then

.DSUB RESULT DATEl DATE2

set the value of RESULT=30. Note that neither DATEl nor
DATE2 may be literals. 5.4.6 Miscellaneous Statements

5.4.6.1 PRINT Statement

The PRINT statement inserts the contents of the specified
program variable into the output "Interim File". This is the
only mechanism for inserting database informatinn into the
nutput report. The content of the variable will be formatted
according to the format defined on the DECLARE statement.
The data will be treated as a separate word when processed by

RPF.

The format of the statement is:
.PRINT <variable name>

PRINT statements may be interspersed with RPF commands to
print the data in the various columns of a tabular report.
Refer to the Sample Reports in Section 5 for examples of the
use of PRINT.

5-103

5.6.2 ASK Statement

The ASK statement displays a message on the user's terminal,
and allows the user to enter a value to be assigned to the
specified program variable. ASK provides a means for the
user to dynamically control the flow and output of a report.

The format of this statement is:
.ASK "<message>" <variable>

<message> is a 1 to x character message which
will be displayed on the user's
terminal. If the message contains
blank characters, the message text
must be enclosed within double
quotes(").

<variable> is the name of the program variable
whose value will be set equal to the
data value entered by the user. The
entered data value must be of the
same data type as the program
variable.

If a numeric variable is specified,
and the entered data is alphanumeric,
the variable is set equal to zero and
no error is indicated.

If a 'date' variable is specified,
the format of the input is MM/DD/YY.
The date routine will verify that the
entered date 1is valid. If invalid,
the operator will be requested to
re-enter the data.

5-104

5.4.6.3 Remark Statement

The REM Statement allows the report programmer to include
comment lines within the program source file. The entire
line of text following the REM statement is treated as a
comment and ignored by RPT. The remark statement will not be
nutput to the interim file. The format of this statement is:

.REM <comment text>

